File: bayes.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (430 lines) | stat: -rw-r--r-- 15,326 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"""
Various bayesian regression
"""

# Authors: V. Michel, F. Pedregosa, A. Gramfort
# License: BSD 3 clause

from math import log
import numpy as np
from scipy import linalg

from .base import LinearModel
from ..utils.extmath import fast_logdet


###############################################################################
# BayesianRidge regression

class BayesianRidge(LinearModel):
    """Bayesian ridge regression

    Fit a Bayesian ridge model and optimize the regularization parameters
    lambda (precision of the weights) and alpha (precision of the noise).

    Parameters
    ----------
    X : array, shape = (n_samples, n_features)
        Training vectors.

    y : array, shape = (length)
        Target values for training vectors

    n_iter : int, optional
        Maximum number of iterations.  Default is 300.

    tol : float, optional
        Stop the algorithm if w has converged. Default is 1.e-3.

    alpha_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the alpha parameter. Default is 1.e-6

    alpha_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the alpha parameter.
        Default is 1.e-6.

    lambda_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the lambda parameter. Default is 1.e-6.

    lambda_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the lambda parameter.
        Default is 1.e-6

    compute_score : boolean, optional
        If True, compute the objective function at each step of the model.
        Default is False

    fit_intercept : boolean, optional
        wether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).
        Default is True.

    normalize : boolean, optional, default False
        If True, the regressors X are normalized

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    verbose : boolean, optional, default False
        Verbose mode when fitting the model.


    Attributes
    ----------
    `coef_` : array, shape = (n_features)
        Coefficients of the regression model (mean of distribution)

    `alpha_` : float
       estimated precision of the noise.

    `lambda_` : array, shape = (n_features)
       estimated precisions of the weights.

    `scores_` : float
        if computed, value of the objective function (to be maximized)

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.BayesianRidge()
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    ... # doctest: +NORMALIZE_WHITESPACE
    BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
            copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
            n_iter=300, normalize=False, tol=0.001, verbose=False)
    >>> clf.predict([[1, 1]])
    array([ 1.])

    Notes
    -----
    See examples/linear_model/plot_bayesian_ridge.py for an example.
    """

    def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
                lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
                fit_intercept=True, normalize=False,
                copy_X=True, verbose=False):
        self.n_iter = n_iter
        self.tol = tol
        self.alpha_1 = alpha_1
        self.alpha_2 = alpha_2
        self.lambda_1 = lambda_1
        self.lambda_2 = lambda_2
        self.compute_score = compute_score
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.copy_X = copy_X
        self.verbose = verbose

    def fit(self, X, y):
        """Fit the model

        Parameters
        ----------
        X : numpy array of shape [n_samples,n_features]
            Training data
        y : numpy array of shape [n_samples]
            Target values

        Returns
        -------
        self : returns an instance of self.
        """
        X = np.asarray(X, dtype=np.float)
        y = np.asarray(y, dtype=np.float)
        X, y, X_mean, y_mean, X_std = self._center_data(X, y,
                self.fit_intercept, self.normalize, self.copy_X)
        n_samples, n_features = X.shape

        ### Initialization of the values of the parameters
        alpha_ = 1. / np.var(y)
        lambda_ = 1.

        verbose = self.verbose
        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2

        self.scores_ = list()
        coef_old_ = None

        XT_y = np.dot(X.T, y)
        U, S, Vh = linalg.svd(X, full_matrices=False)
        eigen_vals_ = S ** 2

        ### Convergence loop of the bayesian ridge regression
        for iter_ in range(self.n_iter):

            ### Compute mu and sigma
            # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X)
            # coef_ = sigma_^-1 * XT * y
            if n_samples > n_features:
                coef_ = np.dot(Vh.T,
                               Vh / (eigen_vals_ + lambda_ / alpha_)[:, None])
                coef_ = np.dot(coef_, XT_y)
                if self.compute_score:
                    logdet_sigma_ = - np.sum(
                        np.log(lambda_ + alpha_ * eigen_vals_))
            else:
                coef_ = np.dot(X.T, np.dot(
                        U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T))
                coef_ = np.dot(coef_, y)
                if self.compute_score:
                    logdet_sigma_ = lambda_ * np.ones(n_features)
                    logdet_sigma_[:n_samples] += alpha_ * eigen_vals_
                    logdet_sigma_ = - np.sum(np.log(logdet_sigma_))

            ### Update alpha and lambda
            rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
            gamma_ = (np.sum((alpha_ * eigen_vals_)
                            / (lambda_ + alpha_ * eigen_vals_)))
            lambda_ = ((gamma_ + 2 * lambda_1)
                            / (np.sum(coef_ ** 2) + 2 * lambda_2))
            alpha_ = ((n_samples - gamma_ + 2 * alpha_1)
                            / (rmse_ + 2 * alpha_2))

            ### Compute the objective function
            if self.compute_score:
                s = lambda_1 * log(lambda_) - lambda_2 * lambda_
                s += alpha_1 * log(alpha_) - alpha_2 * alpha_
                s += 0.5 * (n_features * log(lambda_)
                               + n_samples * log(alpha_)
                               - alpha_ * rmse_
                               - (lambda_ * np.sum(coef_ ** 2))
                               - logdet_sigma_
                               - n_samples * log(2 * np.pi))
                self.scores_.append(s)

            ### Check for convergence
            if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
                if verbose:
                    print "Convergence after ", str(iter_), " iterations"
                break
            coef_old_ = np.copy(coef_)

        self.alpha_ = alpha_
        self.lambda_ = lambda_
        self.coef_ = coef_

        self._set_intercept(X_mean, y_mean, X_std)
        return self


###############################################################################
# ARD (Automatic Relevance Determination) regression


class ARDRegression(LinearModel):
    """Bayesian ARD regression.

    Fit the weights of a regression model, using an ARD prior. The weights of
    the regression model are assumed to be in Gaussian distributions.
    Also estimate the parameters lambda (precisions of the distributions of the
    weights) and alpha (precision of the distribution of the noise).
    The estimation is done by an iterative procedures (Evidence Maximization)

    Parameters
    ----------
    X : array, shape = (n_samples, n_features)
        Training vectors.

    y : array, shape = (n_samples)
        Target values for training vectors

    n_iter : int, optional
        Maximum number of iterations. Default is 300

    tol : float, optional
        Stop the algorithm if w has converged. Default is 1.e-3.

    alpha_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the alpha parameter. Default is 1.e-6.

    alpha_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the alpha parameter. Default is 1.e-6.

    lambda_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the lambda parameter. Default is 1.e-6.

    lambda_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the lambda parameter. Default is 1.e-6.

    compute_score : boolean, optional
        If True, compute the objective function at each step of the model.
        Default is False.

    threshold_lambda : float, optional
        threshold for removing (pruning) weights with high precision from
        the computation. Default is 1.e+4.

    fit_intercept : boolean, optional
        wether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).
        Default is True.

    normalize : boolean, optional
        If True, the regressors X are normalized

    copy_X : boolean, optional, default True.
        If True, X will be copied; else, it may be overwritten.

    verbose : boolean, optional, default False
        Verbose mode when fitting the model.

    Attributes
    ----------
    `coef_` : array, shape = (n_features)
        Coefficients of the regression model (mean of distribution)

    `alpha_` : float
       estimated precision of the noise.

    `lambda_` : array, shape = (n_features)
       estimated precisions of the weights.

    `sigma_` : array, shape = (n_features, n_features)
        estimated variance-covariance matrix of the weights

    `scores_` : float
        if computed, value of the objective function (to be maximized)

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.ARDRegression()
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    ... # doctest: +NORMALIZE_WHITESPACE
    ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
            copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
            n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001,
            verbose=False)
    >>> clf.predict([[1, 1]])
    array([ 1.])

    Notes
    --------
    See examples/linear_model/plot_ard.py for an example.
    """

    def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
                  lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
                  threshold_lambda=1.e+4, fit_intercept=True,
                  normalize=False, copy_X=True, verbose=False):
        self.n_iter = n_iter
        self.tol = tol
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.alpha_1 = alpha_1
        self.alpha_2 = alpha_2
        self.lambda_1 = lambda_1
        self.lambda_2 = lambda_2
        self.compute_score = compute_score
        self.threshold_lambda = threshold_lambda
        self.copy_X = copy_X
        self.verbose = verbose

    def fit(self, X, y):
        """Fit the ARDRegression model according to the given training data
        and parameters.

        Iterative procedure to maximize the evidence

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : array, shape = [n_samples]
            Target values (integers)

        Returns
        -------
        self : returns an instance of self.
        """

        X = np.asarray(X, dtype=np.float)
        y = np.asarray(y, dtype=np.float)

        n_samples, n_features = X.shape
        coef_ = np.zeros(n_features)

        X, y, X_mean, y_mean, X_std = self._center_data(X, y,
                self.fit_intercept, self.normalize, self.copy_X)

        ### Launch the convergence loop
        keep_lambda = np.ones(n_features, dtype=bool)

        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2
        verbose = self.verbose

        ### Initialization of the values of the parameters
        alpha_ = 1. / np.var(y)
        lambda_ = np.ones(n_features)

        self.scores_ = list()
        coef_old_ = None

        ### Iterative procedure of ARDRegression
        for iter_ in range(self.n_iter):
            ### Compute mu and sigma (using Woodbury matrix identity)
            sigma_ = linalg.pinv(np.eye(n_samples) / alpha_ +
                          np.dot(X[:, keep_lambda] *
                          np.reshape(1. / lambda_[keep_lambda], [1, -1]),
                          X[:, keep_lambda].T))
            sigma_ = np.dot(sigma_, X[:, keep_lambda]
                          * np.reshape(1. / lambda_[keep_lambda], [1, -1]))
            sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1])
                                                * X[:, keep_lambda].T, sigma_)
            sigma_.flat[::(sigma_.shape[1] + 1)] += \
                          1. / lambda_[keep_lambda]
            coef_[keep_lambda] = alpha_ * np.dot(
                                        sigma_, np.dot(X[:, keep_lambda].T, y))

            ### Update alpha and lambda
            rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
            gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_)
            lambda_[keep_lambda] = (gamma_ + 2. * lambda_1) \
                            / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)
            alpha_ = (n_samples - gamma_.sum() + 2. * alpha_1) \
                            / (rmse_ + 2. * alpha_2)

            ### Prune the weights with a precision over a threshold
            keep_lambda = lambda_ < self.threshold_lambda
            coef_[keep_lambda == False] = 0

            ### Compute the objective function
            if self.compute_score:
                s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()
                s += alpha_1 * log(alpha_) - alpha_2 * alpha_
                s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_)
                                                + np.sum(np.log(lambda_)))
                s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum())
                self.scores_.append(s)

            ### Check for convergence
            if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
                if verbose:
                    print "Converged after %s iterations" % iter_
                break
            coef_old_ = np.copy(coef_)

        self.coef_ = coef_
        self.alpha_ = alpha_
        self.sigma_ = sigma_

        self._set_intercept(X_mean, y_mean, X_std)
        return self