File: coordinate_descent.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (815 lines) | stat: -rw-r--r-- 27,190 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Gael Varoquaux <gael.varoquaux@inria.fr>
#
# License: BSD Style.

import sys
import warnings
import itertools
import operator

import numpy as np

from .base import LinearModel
from ..utils import as_float_array
from ..cross_validation import check_cv
from ..externals.joblib import Parallel, delayed
from . import cd_fast


###############################################################################
# ElasticNet model

class ElasticNet(LinearModel):
    """Linear Model trained with L1 and L2 prior as regularizer

    Minimizes the objective function::

            1 / (2 * n_samples) * ||y - Xw||^2_2 +
            + alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

    If you are interested in controlling the L1 and L2 penalty
    separately, keep in mind that this is equivalent to::

            a * L1 + b * L2

    where::

            alpha = a + b and rho = a / (a + b)

    The parameter rho corresponds to alpha in the glmnet R package while
    alpha corresponds to the lambda parameter in glmnet. Specifically, rho =
    1 is the lasso penalty. Currently, rho <= 0.01 is not reliable, unless
    you supply your own sequence of alpha.

    Parameters
    ----------
    alpha : float
        Constant that multiplies the penalty terms. Defaults to 1.0
        See the notes for the exact mathematical meaning of this
        parameter

    rho : float
        The ElasticNet mixing parameter, with 0 < rho <= 1. For rho = 0
        the penalty is an L1 penalty. For rho = 1 it is an L2 penalty.
        For 0 < rho < 1, the penalty is a combination of L1 and L2

    fit_intercept: bool
        Whether the intercept should be estimated or not. If False, the
        data is assumed to be already centered.

    normalize : boolean, optional
        If True, the regressors X are normalized

    precompute : True | False | 'auto' | array-like
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    max_iter: int, optional
        The maximum number of iterations

    copy_X : boolean, optional, default False
        If True, X will be copied; else, it may be overwritten.

    tol: float, optional
        The tolerance for the optimization: if the updates are
        smaller than 'tol', the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than tol.

    warm_start : bool, optional
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.

    positive: bool, optional
        When set to True, forces the coefficients to be positive.

    Notes
    -----
    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a fortran contiguous numpy array.
    """
    def __init__(self, alpha=1.0, rho=0.5, fit_intercept=True,
                 normalize=False, precompute='auto', max_iter=1000,
                 copy_X=True, tol=1e-4, warm_start=False, positive=False):
        self.alpha = alpha
        self.rho = rho
        self.coef_ = None
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.precompute = precompute
        self.max_iter = max_iter
        self.copy_X = copy_X
        self.tol = tol
        self.warm_start = warm_start
        self.positive = positive

    def fit(self, X, y, Xy=None, coef_init=None):
        """Fit Elastic Net model with coordinate descent

        Parameters
        -----------
        X: ndarray, (n_samples, n_features)
            Data
        y: ndarray, (n_samples)
            Target
        Xy : array-like, optional
            Xy = np.dot(X.T, y) that can be precomputed. It is useful
            only when the Gram matrix is precomputed.
        coef_init: ndarray of shape n_features
            The initial coeffients to warm-start the optimization

        Notes
        -----

        Coordinate descent is an algorithm that considers each column of
        data at a time hence it will automatically convert the X input
        as a fortran contiguous numpy array if necessary.

        To avoid memory re-allocation it is advised to allocate the
        initial data in memory directly using that format.
        """
        # X and y must be of type float64
        X = np.asanyarray(X, dtype=np.float64)
        y = np.asarray(y, dtype=np.float64)

        n_samples, n_features = X.shape

        X_init = X
        X, y, X_mean, y_mean, X_std = self._center_data(X, y,
                self.fit_intercept, self.normalize, copy=self.copy_X)
        precompute = self.precompute
        if X_init is not X and hasattr(precompute, '__array__'):
            # recompute Gram
            # FIXME: it could be updated from precompute and X_mean
            # instead of recomputed
            precompute = 'auto'
        if X_init is not X and Xy is not None:
            Xy = None  # recompute Xy

        if coef_init is None:
            if not self.warm_start or self.coef_ is None:
                self.coef_ = np.zeros(n_features, dtype=np.float64)
        else:
            self.coef_ = coef_init

        alpha = self.alpha * self.rho * n_samples
        beta = self.alpha * (1.0 - self.rho) * n_samples

        X = np.asfortranarray(X)  # make data contiguous in memory

        # precompute if n_samples > n_features
        if hasattr(precompute, '__array__'):
            Gram = precompute
        elif precompute == True or \
               (precompute == 'auto' and n_samples > n_features):
            Gram = np.dot(X.T, X)
        else:
            Gram = None

        if Gram is None:
            self.coef_, self.dual_gap_, self.eps_ = \
                    cd_fast.enet_coordinate_descent(self.coef_, alpha, beta,
                            X, y, self.max_iter, self.tol, self.positive)
        else:
            if Xy is None:
                Xy = np.dot(X.T, y)
            self.coef_, self.dual_gap_, self.eps_ = \
                    cd_fast.enet_coordinate_descent_gram(self.coef_, alpha,
                    beta, Gram, Xy, y, self.max_iter, self.tol, self.positive)

        self._set_intercept(X_mean, y_mean, X_std)

        if self.dual_gap_ > self.eps_:
            warnings.warn('Objective did not converge, you might want'
                          ' to increase the number of iterations')

        # return self for chaining fit and predict calls
        return self


###############################################################################
# Lasso model

class Lasso(ElasticNet):
    """Linear Model trained with L1 prior as regularizer (aka the Lasso)

    The optimization objective for Lasso is::

        (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

    Technically the Lasso model is optimizing the same objective function as
    the Elastic Net with rho=1.0 (no L2 penalty).

    Parameters
    ----------
    alpha : float, optional
        Constant that multiplies the L1 term. Defaults to 1.0

    fit_intercept : boolean
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional
        If True, the regressors X are normalized

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    precompute : True | False | 'auto' | array-like
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    max_iter: int, optional
        The maximum number of iterations

    tol: float, optional
        The tolerance for the optimization: if the updates are
        smaller than 'tol', the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than tol.

    warm_start : bool, optional
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.

    positive: bool, optional
        When set to True, forces the coefficients to be positive.


    Attributes
    ----------
    `coef_` : array, shape = [n_features]
        parameter vector (w in the fomulation formula)

    `intercept_` : float
        independent term in decision function.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.Lasso(alpha=0.1)
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
       normalize=False, positive=False, precompute='auto', tol=0.0001,
       warm_start=False)
    >>> print clf.coef_
    [ 0.85  0.  ]
    >>> print clf.intercept_
    0.15

    See also
    --------
    lars_path
    lasso_path
    LassoLars
    LassoCV
    LassoLarsCV
    sklearn.decomposition.sparse_encode

    Notes
    -----
    The algorithm used to fit the model is coordinate descent.

    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a fortran contiguous numpy array.
    """

    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 precompute='auto', copy_X=True, max_iter=1000,
                 tol=1e-4, warm_start=False, positive=False):
        super(Lasso, self).__init__(alpha=alpha, rho=1.0,
                            fit_intercept=fit_intercept, normalize=normalize,
                            precompute=precompute, copy_X=copy_X,
                            max_iter=max_iter, tol=tol, warm_start=warm_start,
                            positive=positive)


###############################################################################
# Classes to store linear models along a regularization path

def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None,
               precompute='auto', Xy=None, fit_intercept=True,
               normalize=False, copy_X=True, verbose=False,
               **params):
    """Compute Lasso path with coordinate descent

    The optimization objective for Lasso is::

        (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

    Parameters
    ----------
    X : numpy array of shape [n_samples,n_features]
        Training data. Pass directly as fortran contiguous data to avoid
        unnecessary memory duplication

    y : numpy array of shape [n_samples]
        Target values

    eps : float, optional
        Length of the path. eps=1e-3 means that
        alpha_min / alpha_max = 1e-3

    n_alphas : int, optional
        Number of alphas along the regularization path

    alphas : numpy array, optional
        List of alphas where to compute the models.
        If None alphas are set automatically

    precompute : True | False | 'auto' | array-like
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    Xy : array-like, optional
        Xy = np.dot(X.T, y) that can be precomputed. It is useful
        only when the Gram matrix is precomputed.

    fit_intercept : bool
        Fit or not an intercept

    normalize : boolean, optional
        If True, the regressors X are normalized

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    verbose : bool or integer
        Amount of verbosity

    params : kwargs
        keyword arguments passed to the Lasso objects

    Returns
    -------
    models : a list of models along the regularization path

    Notes
    -----
    See examples/linear_model/plot_lasso_coordinate_descent_path.py
    for an example.

    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a fortran contiguous numpy array.

    See also
    --------
    lars_path
    Lasso
    LassoLars
    LassoCV
    LassoLarsCV
    sklearn.decomposition.sparse_encode
    """
    return enet_path(X, y, rho=1., eps=eps, n_alphas=n_alphas, alphas=alphas,
                     precompute=precompute, Xy=Xy,
                     fit_intercept=fit_intercept, normalize=normalize,
                     copy_X=copy_X, verbose=verbose, **params)


def enet_path(X, y, rho=0.5, eps=1e-3, n_alphas=100, alphas=None,
              precompute='auto', Xy=None, fit_intercept=True,
              normalize=False, copy_X=True, verbose=False,
              **params):
    """Compute Elastic-Net path with coordinate descent

    The Elastic Net optimization function is::

        1 / (2 * n_samples) * ||y - Xw||^2_2 +
        + alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

    Parameters
    ----------
    X : numpy array of shape [n_samples, n_features]
        Training data. Pass directly as fortran contiguous data to avoid
        unnecessary memory duplication

    y : numpy array of shape [n_samples]
        Target values

    rho : float, optional
        float between 0 and 1 passed to ElasticNet (scaling between
        l1 and l2 penalties). rho=1 corresponds to the Lasso

    eps : float
        Length of the path. eps=1e-3 means that
        alpha_min / alpha_max = 1e-3

    n_alphas : int, optional
        Number of alphas along the regularization path

    alphas : numpy array, optional
        List of alphas where to compute the models.
        If None alphas are set automatically

    precompute : True | False | 'auto' | array-like
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    Xy : array-like, optional
        Xy = np.dot(X.T, y) that can be precomputed. It is useful
        only when the Gram matrix is precomputed.

    fit_intercept : bool
        Fit or not an intercept

    normalize : boolean, optional
        If True, the regressors X are normalized

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    verbose : bool or integer
        Amount of verbosity

    params : kwargs
        keyword arguments passed to the Lasso objects

    Returns
    -------
    models : a list of models along the regularization path

    Notes
    -----
    See examples/plot_lasso_coordinate_descent_path.py for an example.

    See also
    --------
    ElasticNet
    ElasticNetCV
    """
    X = as_float_array(X, copy_X)

    X_init = X
    X, y, X_mean, y_mean, X_std = LinearModel._center_data(X, y,
                                                           fit_intercept,
                                                           normalize,
                                                           copy=False)
    X = np.asfortranarray(X)  # make data contiguous in memory
    n_samples, n_features = X.shape

    if X_init is not X and hasattr(precompute, '__array__'):
        precompute = 'auto'
    if X_init is not X and Xy is not None:
        Xy = None

    if 'precompute' is True or \
                ((precompute == 'auto') and (n_samples > n_features)):
        precompute = np.dot(X.T, X)

    if Xy is None:
        Xy = np.dot(X.T, y)

    n_samples = X.shape[0]
    if alphas is None:
        alpha_max = np.abs(Xy).max() / (n_samples * rho)
        alphas = np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max),
                             num=n_alphas)[::-1]
    else:
        alphas = np.sort(alphas)[::-1]  # make sure alphas are properly ordered
    coef_ = None  # init coef_
    models = []

    n_alphas = len(alphas)
    for i, alpha in enumerate(alphas):
        model = ElasticNet(alpha=alpha, rho=rho, fit_intercept=False,
                           precompute=precompute)
        model.set_params(**params)
        model.fit(X, y, coef_init=coef_, Xy=Xy)
        if fit_intercept:
            model.fit_intercept = True
            model._set_intercept(X_mean, y_mean, X_std)
        if verbose:
            if verbose > 2:
                print model
            elif verbose > 1:
                print 'Path: %03i out of %03i' % (i, n_alphas)
            else:
                sys.stderr.write('.')
        coef_ = model.coef_.copy()
        models.append(model)
    return models


def _path_residuals(X, y, train, test, path, path_params, rho=1):
    this_mses = list()
    if 'rho' in path_params:
        path_params['rho'] = rho
    models_train = path(X[train], y[train], **path_params)
    this_mses = np.empty(len(models_train))
    for i_model, model in enumerate(models_train):
        y_ = model.predict(X[test])
        this_mses[i_model] = ((y_ - y[test]) ** 2).mean()
    return this_mses, rho


class LinearModelCV(LinearModel):
    """Base class for iterative model fitting along a regularization path"""

    def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True,
            normalize=False, precompute='auto', max_iter=1000, tol=1e-4,
            copy_X=True, cv=None, verbose=False):
        self.eps = eps
        self.n_alphas = n_alphas
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.precompute = precompute
        self.max_iter = max_iter
        self.tol = tol
        self.copy_X = copy_X
        self.cv = cv
        self.verbose = verbose

    def fit(self, X, y):
        """Fit linear model with coordinate descent along decreasing alphas
        using cross-validation

        Parameters
        ----------

        X : numpy array of shape [n_samples,n_features]
            Training data. Pass directly as fortran contiguous data to avoid
            unnecessary memory duplication

        y : numpy array of shape [n_samples]
            Target values

        """
        X = np.asfortranarray(X, dtype=np.float64)
        y = np.asarray(y, dtype=np.float64)

        # All LinearModelCV parameters except 'cv' are acceptable
        path_params = self.get_params()
        if 'rho' in path_params:
            rhos = np.atleast_1d(path_params['rho'])
            # For the first path, we need to set rho
            path_params['rho'] = rhos[0]
        else:
            rhos = [1, ]
        path_params.pop('cv', None)
        path_params.pop('n_jobs', None)

        # Start to compute path on full data
        # XXX: is this really useful: we are fitting models that we won't
        # use later
        models = self.path(X, y, **path_params)

        # Update the alphas list
        alphas = [model.alpha for model in models]
        n_alphas = len(alphas)
        path_params.update({'alphas': alphas, 'n_alphas': n_alphas})

        # init cross-validation generator
        cv = check_cv(self.cv, X)

        # Compute path for all folds and compute MSE to get the best alpha
        folds = list(cv)
        best_mse = np.inf
        all_mse_paths = list()

        # We do a double for loop folded in one, in order to be able to
        # iterate in parallel on rho and folds
        for rho, mse_alphas in itertools.groupby(
                    Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
                        delayed(_path_residuals)(X, y, train, test,
                                    self.path, path_params, rho=rho)
                            for rho in rhos for train, test in folds
                    ), operator.itemgetter(1)):

            mse_alphas = [m[0] for m in mse_alphas]
            mse_alphas = np.array(mse_alphas)
            mse = np.mean(mse_alphas, axis=0)
            i_best_alpha = np.argmin(mse)
            this_best_mse = mse[i_best_alpha]
            all_mse_paths.append(mse_alphas.T)
            if this_best_mse < best_mse:
                model = models[i_best_alpha]
                best_rho = rho

        if hasattr(model, 'rho'):
            if model.rho != best_rho:
                # Need to refit the model
                model.rho = best_rho
                model.fit(X, y)
            self.rho_ = model.rho
        self.coef_ = model.coef_
        self.intercept_ = model.intercept_
        self.alpha = model.alpha
        self.alphas = np.asarray(alphas)
        self.coef_path_ = np.asarray([model.coef_ for model in models])
        self.mse_path_ = np.squeeze(all_mse_paths)
        return self


class LassoCV(LinearModelCV):
    """Lasso linear model with iterative fitting along a regularization path

    The best model is selected by cross-validation.

    The optimization objective for Lasso is::

        (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

    Parameters
    ----------
    eps : float, optional
        Length of the path. eps=1e-3 means that
        alpha_min / alpha_max = 1e-3.

    n_alphas : int, optional
        Number of alphas along the regularization path

    alphas : numpy array, optional
        List of alphas where to compute the models.
        If None alphas are set automatically

    precompute : True | False | 'auto' | array-like
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    max_iter: int, optional
        The maximum number of iterations

    tol: float, optional
        The tolerance for the optimization: if the updates are
        smaller than 'tol', the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than tol.

    cv : integer or crossvalidation generator, optional
        If an integer is passed, it is the number of fold (default 3).
        Specific crossvalidation objects can be passed, see
        sklearn.cross_validation module for the list of possible objects

    verbose : bool or integer
        amount of verbosity

    Attributes
    ----------
    `alpha_`: float
        The amount of penalization choosen by cross validation

    `coef_` : array, shape = [n_features]
        parameter vector (w in the fomulation formula)

    `intercept_` : float
        independent term in decision function.

    `mse_path_`: array, shape = [n_alphas, n_folds]
        mean square error for the test set on each fold, varying alpha

    Notes
    -----
    See examples/linear_model/lasso_path_with_crossvalidation.py
    for an example.

    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a fortran contiguous numpy array.

    See also
    --------
    lars_path
    lasso_path
    LassoLars
    Lasso
    LassoLarsCV
    """
    path = staticmethod(lasso_path)
    n_jobs = 1


class ElasticNetCV(LinearModelCV):
    """Elastic Net model with iterative fitting along a regularization path

    The best model is selected by cross-validation.

    Parameters
    ----------
    rho : float, optional
        float between 0 and 1 passed to ElasticNet (scaling between
        l1 and l2 penalties). For rho = 0
        the penalty is an L1 penalty. For rho = 1 it is an L2 penalty.
        For 0 < rho < 1, the penalty is a combination of L1 and L2
        This parameter can be a list, in which case the different
        values are tested by cross-validation and the one giving the best
        prediction score is used. Note that a good choice of list of
        values for rho is often to put more values close to 1
        (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1, .5, .7,
        .9, .95, .99, 1]

    eps : float, optional
        Length of the path. eps=1e-3 means that
        alpha_min / alpha_max = 1e-3.

    n_alphas : int, optional
        Number of alphas along the regularization path

    alphas : numpy array, optional
        List of alphas where to compute the models.
        If None alphas are set automatically

    precompute : True | False | 'auto' | array-like
        Whether to use a precomputed Gram matrix to speed up
        calculations. If set to 'auto' let us decide. The Gram
        matrix can also be passed as argument.

    max_iter: int, optional
        The maximum number of iterations

    tol: float, optional
        The tolerance for the optimization: if the updates are
        smaller than 'tol', the optimization code checks the
        dual gap for optimality and continues until it is smaller
        than tol.

    cv : integer or crossvalidation generator, optional
        If an integer is passed, it is the number of fold (default 3).
        Specific crossvalidation objects can be passed, see
        sklearn.cross_validation module for the list of possible objects

    verbose : bool or integer
        amount of verbosity

    n_jobs : integer, optional
        Number of CPUs to use during the cross validation. If '-1', use
        all the CPUs. Note that this is used only if multiple values for
        rho are given.

    Attributes
    ----------
    `alpha_`: float
        The amount of penalization choosen by cross validation

    `rho_`: float
        The compromise between l1 and l2 penalization choosen by
        cross validation

    `coef_` : array, shape = [n_features]
        parameter vector (w in the fomulation formula)

    `intercept_` : float
        independent term in decision function.

    `mse_path_`: array, shape = [n_rho, n_alpha, n_folds]
        mean square error for the test set on each fold, varying rho and
        alpha

    Notes
    -----
    See examples/linear_model/lasso_path_with_crossvalidation.py
    for an example.

    To avoid unnecessary memory duplication the X argument of the fit method
    should be directly passed as a fortran contiguous numpy array.

    The parameter rho corresponds to alpha in the glmnet R package
    while alpha corresponds to the lambda parameter in glmnet.
    More specifically, the optimization objective is::

        1 / (2 * n_samples) * ||y - Xw||^2_2 +
        + alpha * rho * ||w||_1 + 0.5 * alpha * (1 - rho) * ||w||^2_2

    If you are interested in controlling the L1 and L2 penalty
    separately, keep in mind that this is equivalent to::

        a * L1 + b * L2

    for::

        alpha = a + b and rho = a / (a + b)

    See also
    --------
    enet_path
    ElasticNet

    """
    path = staticmethod(enet_path)

    def __init__(self, rho=0.5, eps=1e-3, n_alphas=100, alphas=None,
                 fit_intercept=True, normalize=False, precompute='auto',
                 max_iter=1000, tol=1e-4, cv=None, copy_X=True,
                 verbose=0, n_jobs=1):
        self.rho = rho
        self.eps = eps
        self.n_alphas = n_alphas
        self.alphas = alphas
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.precompute = precompute
        self.max_iter = max_iter
        self.tol = tol
        self.cv = cv
        self.copy_X = copy_X
        self.verbose = verbose
        self.n_jobs = n_jobs