1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
|
"""
Least Angle Regression algorithm. See the documentation on the
Generalized Linear Model for a complete discussion.
"""
# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux
#
# License: BSD Style.
from math import log
import sys
import numpy as np
from scipy import linalg, interpolate
from scipy.linalg.lapack import get_lapack_funcs
from .base import LinearModel
from ..utils import array2d, arrayfuncs, deprecated
from ..cross_validation import check_cv
from ..externals.joblib import Parallel, delayed
def lars_path(X, y, Xy=None, Gram=None, max_iter=500,
alpha_min=0, method='lar', copy_X=True,
eps=np.finfo(np.float).eps,
copy_Gram=True, verbose=False):
"""Compute Least Angle Regression and Lasso path
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Parameters
-----------
X: array, shape: (n_samples, n_features)
Input data
y: array, shape: (n_samples)
Input targets
max_iter: integer, optional
Maximum number of iterations to perform, set to infinity for no limit.
Gram: None, 'auto', array, shape: (n_features, n_features), optional
Precomputed Gram matrix (X' * X), if 'auto', the Gram
matrix is precomputed from the given X, if there are more samples
than features
alpha_min: float, optional
Minimum correlation along the path. It corresponds to the
regularization parameter alpha parameter in the Lasso.
method: {'lar', 'lasso'}
Specifies the returned model. Select 'lar' for Least Angle
Regression, 'lasso' for the Lasso.
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
copy_X: bool
If False, X is overwritten.
copy_Gram: bool
If False, Gram is overwritten.
Returns
--------
alphas: array, shape: (max_features + 1,)
Maximum of covariances (in absolute value) at each iteration.
active: array, shape (max_features,)
Indices of active variables at the end of the path.
coefs: array, shape (n_features, max_features + 1)
Coefficients along the path
See also
--------
lasso_path
LassoLars
Lars
LassoLarsCV
LarsCV
sklearn.decomposition.sparse_encode
Notes
------
* http://en.wikipedia.org/wiki/Least-angle_regression
* http://en.wikipedia.org/wiki/Lasso_(statistics)#LASSO_method
"""
n_features = X.shape[1]
n_samples = y.size
max_features = min(max_iter, n_features)
coefs = np.zeros((max_features + 1, n_features))
alphas = np.zeros(max_features + 1)
n_iter, n_active = 0, 0
active, indices = list(), np.arange(n_features)
# holds the sign of covariance
sign_active = np.empty(max_features, dtype=np.int8)
drop = False
# will hold the cholesky factorization. Only lower part is
# referenced.
L = np.empty((max_features, max_features), dtype=X.dtype)
swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,))
solve_cholesky, = get_lapack_funcs(('potrs',), (X,))
if Gram is None:
if copy_X:
# force copy. setting the array to be fortran-ordered
# speeds up the calculation of the (partial) Gram matrix
# and allows to easily swap columns
X = X.copy('F')
elif Gram == 'auto':
Gram = None
if X.shape[0] > X.shape[1]:
Gram = np.dot(X.T, X)
elif copy_Gram:
Gram = Gram.copy()
if Xy is None:
Cov = np.dot(X.T, y)
else:
Cov = Xy.copy()
if verbose:
if verbose > 1:
print "Step\t\tAdded\t\tDropped\t\tActive set size\t\tC"
else:
sys.stdout.write('.')
sys.stdout.flush()
tiny = np.finfo(np.float).tiny # to avoid division by 0 warning
while True:
if Cov.size:
C_idx = np.argmax(np.abs(Cov))
C_ = Cov[C_idx]
C = np.fabs(C_)
else:
C = 0.
alphas[n_iter] = C / n_samples
if alphas[n_iter] < alpha_min: # early stopping
# interpolation factor 0 <= ss < 1
if n_iter > 0:
# In the first iteration, all alphas are zero, the formula
# below would make ss a NaN
ss = (alphas[n_iter - 1] - alpha_min) / (alphas[n_iter - 1] -
alphas[n_iter])
coefs[n_iter] = coefs[n_iter - 1] + ss * (coefs[n_iter] -
coefs[n_iter - 1])
alphas[n_iter] = alpha_min
break
if n_iter >= max_iter or n_active >= n_features:
break
if not drop:
##########################################################
# Append x_j to the Cholesky factorization of (Xa * Xa') #
# #
# ( L 0 ) #
# L -> ( ) , where L * w = Xa' x_j #
# ( w z ) and z = ||x_j|| #
# #
##########################################################
sign_active[n_active] = np.sign(C_)
m, n = n_active, C_idx + n_active
Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0])
indices[n], indices[m] = indices[m], indices[n]
Cov = Cov[1:] # remove Cov[0]
if Gram is None:
X.T[n], X.T[m] = swap(X.T[n], X.T[m])
c = nrm2(X.T[n_active]) ** 2
L[n_active, :n_active] = \
np.dot(X.T[n_active], X.T[:n_active].T)
else:
# swap does only work inplace if matrix is fortran
# contiguous ...
Gram[m], Gram[n] = swap(Gram[m], Gram[n])
Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n])
c = Gram[n_active, n_active]
L[n_active, :n_active] = Gram[n_active, :n_active]
# Update the cholesky decomposition for the Gram matrix
arrayfuncs.solve_triangular(L[:n_active, :n_active],
L[n_active, :n_active])
v = np.dot(L[n_active, :n_active], L[n_active, :n_active])
diag = max(np.sqrt(np.abs(c - v)), eps)
L[n_active, n_active] = diag
active.append(indices[n_active])
n_active += 1
if verbose > 1:
print "%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '',
n_active, C)
# least squares solution
least_squares, info = solve_cholesky(L[:n_active, :n_active],
sign_active[:n_active], lower=True)
# is this really needed ?
AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active]))
least_squares *= AA
if Gram is None:
# equiangular direction of variables in the active set
eq_dir = np.dot(X.T[:n_active].T, least_squares)
# correlation between each unactive variables and
# eqiangular vector
corr_eq_dir = np.dot(X.T[n_active:], eq_dir)
else:
# if huge number of features, this takes 50% of time, I
# think could be avoided if we just update it using an
# orthogonal (QR) decomposition of X
corr_eq_dir = np.dot(Gram[:n_active, n_active:].T,
least_squares)
g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny))
g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny))
gamma_ = min(g1, g2, C / AA)
# TODO: better names for these variables: z
drop = False
z = -coefs[n_iter, active] / least_squares
z_pos = arrayfuncs.min_pos(z)
if z_pos < gamma_:
# some coefficients have changed sign
idx = np.where(z == z_pos)[0]
# update the sign, important for LAR
sign_active[idx] = -sign_active[idx]
if method == 'lasso':
gamma_ = z_pos
drop = True
n_iter += 1
if n_iter >= coefs.shape[0]:
# resize the coefs and alphas array
add_features = 2 * max(1, (max_features - n_active))
coefs.resize((n_iter + add_features, n_features))
alphas.resize(n_iter + add_features)
coefs[n_iter, active] = coefs[n_iter - 1, active] + \
gamma_ * least_squares
# update correlations
Cov -= gamma_ * corr_eq_dir
# See if any coefficient has changed sign
if drop and method == 'lasso':
arrayfuncs.cholesky_delete(L[:n_active, :n_active], idx)
n_active -= 1
m, n = idx, n_active
drop_idx = active.pop(idx)
if Gram is None:
# propagate dropped variable
for i in range(idx, n_active):
X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1])
indices[i], indices[i + 1] = \
indices[i + 1], indices[i] # yeah this is stupid
# TODO: this could be updated
residual = y - np.dot(X[:, :n_active],
coefs[n_iter, active])
temp = np.dot(X.T[n_active], residual)
Cov = np.r_[temp, Cov]
else:
for i in range(idx, n_active):
indices[i], indices[i + 1] = \
indices[i + 1], indices[i]
Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1])
Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i],
Gram[:, i + 1])
# Cov_n = Cov_j + x_j * X + increment(betas) TODO:
# will this still work with multiple drops ?
# recompute covariance. Probably could be done better
# wrong as Xy is not swapped with the rest of variables
# TODO: this could be updated
residual = y - np.dot(X, coefs[n_iter])
temp = np.dot(X.T[drop_idx], residual)
Cov = np.r_[temp, Cov]
sign_active = np.delete(sign_active, idx)
sign_active = np.append(sign_active, 0.) # just to maintain size
if verbose > 1:
print "%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx,
n_active, abs(temp))
# resize coefs in case of early stop
alphas = alphas[:n_iter + 1]
coefs = coefs[:n_iter + 1]
return alphas, active, coefs.T
###############################################################################
# Estimator classes
class Lars(LinearModel):
"""Least Angle Regression model a.k.a. LAR
Parameters
----------
n_nonzero_coefs : int, optional
Target number of non-zero coefficients. Use np.inf for no limit.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to 'auto' let us decide. The Gram
matrix can also be passed as argument.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the 'tol' parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Attributes
----------
`coef_` : array, shape = [n_features]
parameter vector (w in the fomulation formula)
`intercept_` : float
independent term in decision function.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.Lars(n_nonzero_coefs=1)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Lars(copy_X=True, eps=..., fit_intercept=True, n_nonzero_coefs=1,
normalize=True, precompute='auto', verbose=False)
>>> print clf.coef_ # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[ 0. -1.11...]
See also
--------
lars_path, LarsCV
sklearn.decomposition.sparse_encode
http://en.wikipedia.org/wiki/Least_angle_regression
"""
def __init__(self, fit_intercept=True, verbose=False, normalize=True,
precompute='auto', n_nonzero_coefs=500,
eps=np.finfo(np.float).eps, copy_X=True):
self.fit_intercept = fit_intercept
self.verbose = verbose
self.normalize = normalize
self.method = 'lar'
self.precompute = precompute
self.n_nonzero_coefs = n_nonzero_coefs
self.eps = eps
self.copy_X = copy_X
def _get_gram(self):
# precompute if n_samples > n_features
precompute = self.precompute
if hasattr(precompute, '__array__'):
# copy as it's going to be modified
Gram = precompute.copy()
elif precompute == 'auto':
Gram = 'auto'
else:
Gram = None
return Gram
def fit(self, X, y):
"""Fit the model using X, y as training data.
parameters
----------
X : array-like, shape = [n_samples, n_features]
training data.
y : array-like, shape = [n_samples]
target values.
returns
-------
self : object
returns an instance of self.
"""
X = array2d(X)
y = np.asarray(y)
X, y, X_mean, y_mean, X_std = self._center_data(X, y,
self.fit_intercept,
self.normalize,
self.copy_X)
alpha = getattr(self, 'alpha', 0.)
if hasattr(self, 'n_nonzero_coefs'):
alpha = 0. # n_nonzero_coefs parametrization takes priority
max_iter = self.n_nonzero_coefs
else:
max_iter = self.max_iter
Gram = self._get_gram()
self.alphas_, self.active_, self.coef_path_ = lars_path(X, y,
Gram=Gram, copy_X=self.copy_X,
copy_Gram=False, alpha_min=alpha,
method=self.method, verbose=max(0, self.verbose - 1),
max_iter=max_iter, eps=self.eps)
self.coef_ = self.coef_path_[:, -1]
self._set_intercept(X_mean, y_mean, X_std)
return self
class LassoLars(Lars):
"""Lasso model fit with Least Angle Regression a.k.a. Lars
It is a Linear Model trained with an L1 prior as regularizer.
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Parameters
----------
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to 'auto' let us decide. The Gram
matrix can also be passed as argument.
max_iter: integer, optional
Maximum number of iterations to perform.
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the 'tol' parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Attributes
----------
`coef_` : array, shape = [n_features]
parameter vector (w in the fomulation formula)
`intercept_` : float
independent term in decision function.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.LassoLars(alpha=0.01)
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,
max_iter=500, normalize=True, precompute='auto', verbose=False)
>>> print clf.coef_ # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[ 0. -0.963257...]
See also
--------
lars_path
lasso_path
Lasso
LassoCV
LassoLarsCV
sklearn.decomposition.sparse_encode
http://en.wikipedia.org/wiki/Least_angle_regression
"""
def __init__(self, alpha=1.0, fit_intercept=True, verbose=False,
normalize=True, precompute='auto', max_iter=500,
eps=np.finfo(np.float).eps, copy_X=True):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.method = 'lasso'
self.precompute = precompute
self.copy_X = copy_X
self.eps = eps
# Deprecated classes
@deprecated("Use Lars instead")
class LARS(Lars):
pass
@deprecated("Use LassoLars instead")
class LassoLARS(LassoLars):
pass
###############################################################################
# Cross-validated estimator classes
def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None,
copy=True, method='lars', verbose=False,
fit_intercept=True, normalize=True, max_iter=500,
eps=np.finfo(np.float).eps):
"""Compute the residues on left-out data for a full LARS path
Parameters
-----------
X_train: array, shape (n_samples, n_features)
The data to fit the LARS on
y_train: array, shape (n_samples)
The target variable to fit LARS on
X_test: array, shape (n_samples, n_features)
The data to compute the residues on
y_test: array, shape (n_samples)
The target variable to compute the residues on
Gram: None, 'auto', array, shape: (n_features, n_features), optional
Precomputed Gram matrix (X' * X), if 'auto', the Gram
matrix is precomputed from the given X, if there are more samples
than features
copy: boolean, optional
Whether X_train, X_test, y_train and y_test should be copied;
if False, they may be overwritten.
method: 'lar' | 'lasso'
Specifies the returned model. Select 'lar' for Least Angle
Regression, 'lasso' for the Lasso.
verbose: integer, optional
Sets the amount of verbosity
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
max_iter: integer, optional
Maximum number of iterations to perform.
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the 'tol' parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Returns
--------
alphas: array, shape: (max_features + 1,)
Maximum of covariances (in absolute value) at each
iteration.
active: array, shape (max_features,)
Indices of active variables at the end of the path.
coefs: array, shape (n_features, max_features + 1)
Coefficients along the path
residues: array, shape (n_features, max_features + 1)
Residues of the prediction on the test data
"""
if copy:
X_train = X_train.copy()
y_train = y_train.copy()
X_test = X_test.copy()
y_test = y_test.copy()
if fit_intercept:
X_mean = X_train.mean(axis=0)
X_train -= X_mean
X_test -= X_mean
y_mean = y_train.mean(axis=0)
y_train -= y_mean
y_test -= y_mean
if normalize:
norms = np.sqrt(np.sum(X_train ** 2, axis=0))
nonzeros = np.flatnonzero(norms)
X_train[:, nonzeros] /= norms[nonzeros]
alphas, active, coefs = lars_path(X_train, y_train, Gram=Gram,
copy_X=False, copy_Gram=False,
method=method, verbose=max(0, verbose - 1),
max_iter=max_iter, eps=eps)
if normalize:
coefs[nonzeros] /= norms[nonzeros][:, np.newaxis]
residues = np.array([(np.dot(X_test, coef) - y_test)
for coef in coefs.T])
return alphas, active, coefs, residues
class LarsCV(LARS):
"""Cross-validated Least Angle Regression model
Parameters
----------
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to 'auto' let us decide. The Gram
matrix can also be passed as argument.
max_iter: integer, optional
Maximum number of iterations to perform.
cv : crossvalidation generator, optional
see sklearn.cross_validation module. If None is passed, default to
a 5-fold strategy
max_n_alphas : integer, optional
The maximum number of points on the path used to compute the
residuals in the cross-validation
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If '-1', use
all the CPUs
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
Attributes
----------
`coef_` : array, shape = [n_features]
parameter vector (w in the fomulation formula)
`intercept_` : float
independent term in decision function.
`coef_path`: array, shape = [n_features, n_alpha]
the varying values of the coefficients along the path
See also
--------
lars_path, LassoLARS, LassoLarsCV
"""
method = 'lar'
def __init__(self, fit_intercept=True, verbose=False, max_iter=500,
normalize=True, precompute='auto', cv=None,
max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps,
copy_X=True):
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.precompute = precompute
self.copy_X = copy_X
self.cv = cv
self.max_n_alphas = max_n_alphas
self.n_jobs = n_jobs
self.eps = eps
def fit(self, X, y):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : object
returns an instance of self.
"""
X = np.asarray(X)
# init cross-validation generator
cv = check_cv(self.cv, X, y, classifier=False)
Gram = 'auto' if self.precompute else None
cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(_lars_path_residues)(X[train], y[train],
X[test], y[test], Gram=Gram,
copy=False, method=self.method,
verbose=max(0, self.verbose - 1),
normalize=self.normalize,
fit_intercept=self.fit_intercept,
max_iter=self.max_iter,
eps=self.eps)
for train, test in cv)
all_alphas = np.concatenate(list(zip(*cv_paths))[0])
# Unique also sorts
all_alphas = np.unique(all_alphas)
# Take at most max_n_alphas values
stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas))))
all_alphas = all_alphas[::stride]
mse_path = np.empty((len(all_alphas), len(cv_paths)))
for index, (alphas, active, coefs, residues) in enumerate(cv_paths):
alphas = alphas[::-1]
residues = residues[::-1]
if alphas[0] != 0:
alphas = np.r_[0, alphas]
residues = np.r_[residues[0, np.newaxis], residues]
if alphas[-1] != all_alphas[-1]:
alphas = np.r_[alphas, all_alphas[-1]]
residues = np.r_[residues, residues[-1, np.newaxis]]
this_residues = interpolate.interp1d(alphas,
residues,
axis=0)(all_alphas)
this_residues **= 2
mse_path[:, index] = np.mean(this_residues, axis=-1)
mask = np.all(np.isfinite(mse_path), axis=-1)
all_alphas = all_alphas[mask]
mse_path = mse_path[mask]
# Select the alpha that minimizes left-out error
i_best_alpha = np.argmin(mse_path.mean(axis=-1))
best_alpha = all_alphas[i_best_alpha]
# Store our parameters
self.alpha = best_alpha
self.cv_alphas = all_alphas
self.cv_mse_path_ = mse_path
# Now compute the full model
LARS.fit(self, X, y)
return self
class LassoLarsCV(LarsCV):
"""Cross-validated Lasso, using the LARS algorithm
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Parameters
----------
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to 'auto' let us decide. The Gram
matrix can also be passed as argument.
max_iter: integer, optional
Maximum number of iterations to perform.
cv : crossvalidation generator, optional
see sklearn.cross_validation module. If None is passed, default to
a 5-fold strategy
max_n_alphas : integer, optional
The maximum number of points on the path used to compute the
residuals in the cross-validation
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If '-1', use
all the CPUs
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
Attributes
----------
`coef_` : array, shape = [n_features]
parameter vector (w in the fomulation formula)
`intercept_` : float
independent term in decision function.
`coef_path`: array, shape = [n_features, n_alpha]
the varying values of the coefficients along the path
`alphas_`: array, shape = [n_alpha]
the different values of alpha along the path
`cv_alphas`: array, shape = [n_cv_alphas]
all the values of alpha along the path for the different folds
`cv_mse_path_`: array, shape = [n_folds, n_cv_alphas]
the mean square error on left-out for each fold along the path
(alpha values given by cv_alphas)
Notes
-----
The object solves the same problem as the LassoCV object. However,
unlike the LassoCV, it find the relevent alphas values by itself.
In general, because of this property, it will be more stable.
However, it is more fragile to heavily multicollinear datasets.
It is more efficient than the LassoCV if only a small number of
features are selected compared to the total number, for instance if
there are very few samples compared to the number of features.
See also
--------
lars_path, LassoLars, LarsCV, LassoCV
"""
method = 'lasso'
class LassoLarsIC(LassoLars):
"""Lasso model fit with Lars using BIC or AIC for model selection
The optimization objective for Lasso is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
AIC is the Akaike information criterion and BIC is the Bayes
Information criterion. Such criteria are useful to select the value
of the regularization parameter by making a trade-off between the
goodness of fit and the complexity of the model. A good model should
explain well the data while being simple.
Parameters
----------
criterion: 'bic' | 'aic'
The type of criterion to use.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up
calculations. If set to 'auto' let us decide. The Gram
matrix can also be passed as argument.
max_iter: integer, optional
Maximum number of iterations to perform. Can be used for
early stopping.
eps: float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the 'tol' parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
Attributes
----------
`coef_` : array, shape = [n_features]
parameter vector (w in the fomulation formula)
`intercept_` : float
independent term in decision function.
`alpha_` : float
the alpha parameter chosen by the information criterion
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.LassoLarsIC(criterion='bic')
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,
max_iter=500, normalize=True, precompute='auto',
verbose=False)
>>> print clf.coef_ # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[ 0. -1.11...]
Notes
-----
The estimation of the number of degrees of freedom is given by:
"On the degrees of freedom of the lasso"
Hui Zou, Trevor Hastie, and Robert Tibshirani
Ann. Statist. Volume 35, Number 5 (2007), 2173-2192.
http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Bayesian_information_criterion
See also
--------
lars_path, LassoLars, LassoLarsCV
"""
def __init__(self, criterion='aic', fit_intercept=True, verbose=False,
normalize=True, precompute='auto', max_iter=500,
eps=np.finfo(np.float).eps, copy_X=True):
if criterion not in ['aic', 'bic']:
raise ValueError('criterion should be either bic or aic')
self.criterion = criterion
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.copy_X = copy_X
self.precompute = precompute
self.eps = eps
def fit(self, X, y, copy_X=True):
"""Fit the model using X, y as training data.
parameters
----------
x : array-like, shape = [n_samples, n_features]
training data.
y : array-like, shape = [n_samples]
target values.
returns
-------
self : object
returns an instance of self.
"""
X = array2d(X)
y = np.asarray(y)
X, y, Xmean, ymean, Xstd = LinearModel._center_data(X, y,
self.fit_intercept,
self.normalize,
self.copy_X)
max_iter = self.max_iter
Gram = self._get_gram()
alphas_, active_, coef_path_ = lars_path(X, y,
Gram=Gram, copy_X=copy_X,
copy_Gram=False, alpha_min=0.0,
method='lasso', verbose=self.verbose,
max_iter=max_iter, eps=self.eps)
n_samples = X.shape[0]
if self.criterion == 'aic':
K = 2 # AIC
elif self.criterion == 'bic':
K = log(n_samples) # BIC
else:
raise ValueError('criterion should be either bic or aic')
R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals
mean_squared_error = np.mean(R ** 2, axis=0)
df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom
for k, coef in enumerate(coef_path_.T):
mask = np.abs(coef) > np.finfo(coef.dtype).eps
if not np.any(mask):
continue
# get the number of degrees of freedom equal to:
# Xc = X[:, mask]
# Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs
df[k] = np.sum(mask)
self.alphas_ = alphas_
self.criterion_ = n_samples * np.log(mean_squared_error) + K * df
n_best = np.argmin(self.criterion_)
self.alpha_ = alphas_[n_best]
self.coef_ = coef_path_[:, n_best]
self._set_intercept(Xmean, ymean, Xstd)
return self
|