1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
import numpy as np
from ..base import ClassifierMixin
from ..feature_selection.selector_mixin import SelectorMixin
from ..svm.base import BaseLibLinear
from ..svm.liblinear import csr_predict_prob_wrap, predict_prob_wrap
class LogisticRegression(BaseLibLinear, ClassifierMixin, SelectorMixin):
"""Logistic Regression (aka logit, MaxEnt) classifier.
In the multiclass case, the training algorithm uses a one-vs.-all (OvA)
scheme, rather than the "true" multinomial LR.
This class implements L1 and L2 regularized logistic regression using the
`liblinear` library. It can handle both dense and sparse input. Use
C-ordered arrays or CSR matrices containing 64-bit floats for optimal
performance; any other input format will be converted (and copied).
Parameters
----------
penalty : string, 'l1' or 'l2'
Used to specify the norm used in the penalization
dual : boolean
Dual or primal formulation. Dual formulation is only
implemented for l2 penalty. Prefer dual=False when
n_samples > n_features.
C : float or None, optional (default=None)
Specifies the strength of the regularization. The smaller it is
the bigger in the regularization. If None then C is set to n_samples.
fit_intercept : bool, default: True
Specifies if a constant (a.k.a. bias or intercept) should be
added the decision function
intercept_scaling : float, default: 1
when self.fit_intercept is True, instance vector x becomes
[x, self.intercept_scaling],
i.e. a "synthetic" feature with constant value equals to
intercept_scaling is appended to the instance vector.
The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization
as all other features.
To lessen the effect of regularization on synthetic feature weight
(and therefore on the intercept) intercept_scaling has to be increased
tol: float, optional
tolerance for stopping criteria
Attributes
----------
`coef_` : array, shape = [n_classes-1, n_features]
Coefficient of the features in the decision function.
`coef_` is readonly property derived from `raw_coef_` that \
follows the internal memory layout of liblinear.
`intercept_` : array, shape = [n_classes-1]
intercept (a.k.a. bias) added to the decision function.
It is available only when parameter intercept is set to True
See also
--------
LinearSVC
Notes
-----
The underlying C implementation uses a random number generator to
select features when fitting the model. It is thus not uncommon,
to have slightly different results for the same input data. If
that happens, try with a smaller tol parameter.
References:
LIBLINEAR -- A Library for Large Linear Classification
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent
methods for logistic regression and maximum entropy models.
Machine Learning 85(1-2):41-75.
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf
"""
def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None):
super(LogisticRegression, self).__init__(penalty=penalty, dual=dual,
loss='lr', tol=tol, C=C, fit_intercept=fit_intercept,
intercept_scaling=intercept_scaling, class_weight=class_weight)
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by the
label of classes.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
T : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in
the model, where classes are ordered by arithmetical
order.
"""
X = self._validate_for_predict(X)
C = 0.0 # C is not useful here
prob_wrap = (csr_predict_prob_wrap if self._sparse else
predict_prob_wrap)
probas = prob_wrap(X, self.raw_coef_, self._get_solver_type(),
self.tol, C, self.class_weight_label_,
self.class_weight_, self.label_, self._get_bias())
return probas[:, np.argsort(self.label_)]
def predict_log_proba(self, X):
"""Log of Probability estimates.
The returned estimates for all classes are ordered by the
label of classes.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
T : array-like, shape = [n_samples, n_classes]
Returns the log-probabilities of the sample for each class in
the model, where classes are ordered by arithmetical
order.
"""
return np.log(self.predict_proba(X))
|