File: logistic.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (138 lines) | stat: -rw-r--r-- 5,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np

from ..base import ClassifierMixin
from ..feature_selection.selector_mixin import SelectorMixin
from ..svm.base import BaseLibLinear
from ..svm.liblinear import csr_predict_prob_wrap, predict_prob_wrap


class LogisticRegression(BaseLibLinear, ClassifierMixin, SelectorMixin):
    """Logistic Regression (aka logit, MaxEnt) classifier.

    In the multiclass case, the training algorithm uses a one-vs.-all (OvA)
    scheme, rather than the "true" multinomial LR.

    This class implements L1 and L2 regularized logistic regression using the
    `liblinear` library. It can handle both dense and sparse input. Use
    C-ordered arrays or CSR matrices containing 64-bit floats for optimal
    performance; any other input format will be converted (and copied).

    Parameters
    ----------
    penalty : string, 'l1' or 'l2'
        Used to specify the norm used in the penalization

    dual : boolean
        Dual or primal formulation. Dual formulation is only
        implemented for l2 penalty. Prefer dual=False when
        n_samples > n_features.

    C : float or None, optional (default=None)
        Specifies the strength of the regularization. The smaller it is
        the bigger in the regularization. If None then C is set to n_samples.

    fit_intercept : bool, default: True
        Specifies if a constant (a.k.a. bias or intercept) should be
        added the decision function

    intercept_scaling : float, default: 1
        when self.fit_intercept is True, instance vector x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight
        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased

    tol: float, optional
        tolerance for stopping criteria

    Attributes
    ----------
    `coef_` : array, shape = [n_classes-1, n_features]
        Coefficient of the features in the decision function.

        `coef_` is readonly property derived from `raw_coef_` that \
        follows the internal memory layout of liblinear.

    `intercept_` : array, shape = [n_classes-1]
        intercept (a.k.a. bias) added to the decision function.
        It is available only when parameter intercept is set to True

    See also
    --------
    LinearSVC

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon,
    to have slightly different results for the same input data. If
    that happens, try with a smaller tol parameter.

    References:

    LIBLINEAR -- A Library for Large Linear Classification
        http://www.csie.ntu.edu.tw/~cjlin/liblinear/

    Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent
        methods for logistic regression and maximum entropy models.
        Machine Learning 85(1-2):41-75.
        http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf
    """

    def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0,
            fit_intercept=True, intercept_scaling=1, class_weight=None):

        super(LogisticRegression, self).__init__(penalty=penalty, dual=dual,
                loss='lr', tol=tol, C=C, fit_intercept=fit_intercept,
                intercept_scaling=intercept_scaling, class_weight=class_weight)

    def predict_proba(self, X):
        """Probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        T : array-like, shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in
            the model, where classes are ordered by arithmetical
            order.
        """
        X = self._validate_for_predict(X)

        C = 0.0  # C is not useful here

        prob_wrap = (csr_predict_prob_wrap if self._sparse else
                predict_prob_wrap)
        probas = prob_wrap(X, self.raw_coef_, self._get_solver_type(),
                           self.tol, C, self.class_weight_label_,
                           self.class_weight_, self.label_, self._get_bias())
        return probas[:, np.argsort(self.label_)]

    def predict_log_proba(self, X):
        """Log of Probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        T : array-like, shape = [n_samples, n_classes]
            Returns the log-probabilities of the sample for each class in
            the model, where classes are ordered by arithmetical
            order.
        """
        return np.log(self.predict_proba(X))