File: omp.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (573 lines) | stat: -rw-r--r-- 20,513 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
"""Orthogonal matching pursuit algorithms
"""

# Author: Vlad Niculae
#
# License: BSD Style.

import warnings

import numpy as np
from scipy import linalg
from scipy.linalg.lapack import get_lapack_funcs

from .base import LinearModel
from ..utils import array2d
from ..utils.arrayfuncs import solve_triangular

premature = """ Orthogonal matching pursuit ended prematurely due to linear
dependence in the dictionary. The requested precision might not have been met.
"""


def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True):
    """Orthogonal Matching Pursuit step using the Cholesky decomposition.

    Parameters:
    -----------
    X: array, shape = (n_samples, n_features)
        Input dictionary. Columns are assumed to have unit norm.

    y: array, shape = (n_samples,)
        Input targets

    n_nonzero_coefs: int
        Targeted number of non-zero elements

    tol: float
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_X: bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    Returns:
    --------
    gamma: array, shape = (n_nonzero_coefs,)
        Non-zero elements of the solution

    idx: array, shape = (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector

    """
    if copy_X:
        X = X.copy('F')
    else:  # even if we are allowed to overwrite, still copy it if bad order
        X = np.asfortranarray(X)

    min_float = np.finfo(X.dtype).eps
    nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,))
    potrs, = get_lapack_funcs(('potrs',), (X,))

    alpha = np.dot(X.T, y)
    residual = y
    gamma = np.empty(0)
    n_active = 0
    indices = range(X.shape[1])  # keeping track of swapping

    max_features = X.shape[1] if tol is not None else n_nonzero_coefs
    L = np.empty((max_features, max_features), dtype=X.dtype)
    L[0, 0] = 1.

    while True:
        lam = np.argmax(np.abs(np.dot(X.T, residual)))
        if lam < n_active or alpha[lam] ** 2 < min_float:
            # atom already selected or inner product too small
            warnings.warn(premature, RuntimeWarning, stacklevel=2)
            break
        if n_active > 0:
            # Updates the Cholesky decomposition of X' X
            L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam])
            solve_triangular(L[:n_active, :n_active], L[n_active, :n_active])
            v = nrm2(L[n_active, :n_active]) ** 2
            if 1 - v <= min_float:  # selected atoms are dependent
                warnings.warn(premature, RuntimeWarning, stacklevel=2)
                break
            L[n_active, n_active] = np.sqrt(1 - v)
        X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam])
        alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active]
        indices[n_active], indices[lam] = indices[lam], indices[n_active]
        n_active += 1
        # solves LL'x = y as a composition of two triangular systems
        gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True,
                         overwrite_b=False)

        residual = y - np.dot(X[:, :n_active], gamma)
        if tol is not None and nrm2(residual) ** 2 <= tol:
            break
        elif n_active == max_features:
            break

    return gamma, indices[:n_active]


def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
              copy_Gram=True, copy_Xy=True):
    """Orthogonal Matching Pursuit step on a precomputed Gram matrix.

    This function uses the the Cholesky decomposition method.

    Parameters:
    -----------
    Gram: array, shape = (n_features, n_features)
        Gram matrix of the input data matrix

    Xy: array, shape = (n_features,)
        Input targets

    n_nonzero_coefs: int
        Targeted number of non-zero elements

    tol_0: float
        Squared norm of y, required if tol is not None.

    tol: float
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_Gram: bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy: bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    Returns:
    --------
    gamma: array, shape = (n_nonzero_coefs,)
        Non-zero elements of the solution

    idx: array, shape = (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector

    """
    Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram)

    if copy_Xy:
        Xy = Xy.copy()

    min_float = np.finfo(Gram.dtype).eps
    nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,))
    potrs, = get_lapack_funcs(('potrs',), (Gram,))

    indices = range(len(Gram))  # keeping track of swapping
    alpha = Xy
    tol_curr = tol_0
    delta = 0
    gamma = np.empty(0)
    n_active = 0

    max_features = len(Gram) if tol is not None else n_nonzero_coefs
    L = np.empty((max_features, max_features), dtype=Gram.dtype)
    L[0, 0] = 1.

    while True:
        lam = np.argmax(np.abs(alpha))
        if lam < n_active or alpha[lam] ** 2 < min_float:
            # selected same atom twice, or inner product too small
            warnings.warn(premature, RuntimeWarning, stacklevel=2)
            break
        if n_active > 0:
            L[n_active, :n_active] = Gram[lam, :n_active]
            solve_triangular(L[:n_active, :n_active], L[n_active, :n_active])
            v = nrm2(L[n_active, :n_active]) ** 2
            if 1 - v <= min_float:  # selected atoms are dependent
                warnings.warn(premature, RuntimeWarning, stacklevel=2)
                break
            L[n_active, n_active] = np.sqrt(1 - v)
        Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam])
        Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam])
        indices[n_active], indices[lam] = indices[lam], indices[n_active]
        Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active]
        n_active += 1
        # solves LL'x = y as a composition of two triangular systems
        gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True,
                         overwrite_b=False)

        beta = np.dot(Gram[:, :n_active], gamma)
        alpha = Xy - beta
        if tol is not None:
            tol_curr += delta
            delta = np.inner(gamma, beta[:n_active])
            tol_curr -= delta
            if tol_curr <= tol:
                break
        elif n_active == max_features:
            break

    return gamma, indices[:n_active]


def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute_gram=False,
                  copy_X=True):
    """Orthogonal Matching Pursuit (OMP)

    Solves n_targets Orthogonal Matching Pursuit problems.
    An instance of the problem has the form:

    When parametrized by the number of non-zero coefficients using
    `n_nonzero_coefs`:
    argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs}

    When parametrized by error using the parameter `tol`:
    argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol

    Parameters
    ----------
    X: array, shape = (n_samples, n_features)
        Input data. Columns are assumed to have unit norm.

    y: array, shape = (n_samples,) or (n_samples, n_targets)
        Input targets

    n_nonzero_coefs: int
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol: float
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    precompute_gram: {True, False, 'auto'},
        Whether to perform precomputations. Improves performance when n_targets
        or n_samples is very large.

    copy_X: bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    Returns
    -------
    coef: array, shape = (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution

    See also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp_gram
    lars_path
    decomposition.sparse_encode
    decomposition.sparse_encode_parallel

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    """
    X = np.asarray(X)
    y = np.asarray(y)
    if y.ndim == 1:
        y = y[:, np.newaxis]
    if copy_X:
        X = X.copy('F')
        copy_X = False
    else:
        X = np.asfortranarray(X)
    if y.shape[1] > 1:  # subsequent targets will be affected
        copy_X = True
    if n_nonzero_coefs == None and tol == None:
        n_nonzero_coefs = int(0.1 * X.shape[1])
    if tol is not None and tol < 0:
        raise ValueError("Epsilon cannot be negative")
    if tol is None and n_nonzero_coefs <= 0:
        raise ValueError("The number of atoms must be positive")
    if tol is None and n_nonzero_coefs > X.shape[1]:
        raise ValueError("The number of atoms cannot be more than the number \
                          of features")
    if precompute_gram == 'auto':
        precompute_gram = X.shape[0] > X.shape[1]
    if precompute_gram:
        G = np.dot(X.T, X)
        G = np.asfortranarray(G)
        Xy = np.dot(X.T, y)
        if tol is not None:
            norms_squared = np.sum((y ** 2), axis=0)
        else:
            norms_squared = None
        return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared,
                                  copy_Gram=copy_X, copy_Xy=False)

    coef = np.zeros((X.shape[1], y.shape[1]))
    for k in xrange(y.shape[1]):
        x, idx = _cholesky_omp(X, y[:, k], n_nonzero_coefs, tol,
                               copy_X=copy_X)
        coef[idx, k] = x
    return np.squeeze(coef)


def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None,
                       norms_squared=None, copy_Gram=True,
                       copy_Xy=True):
    """Gram Orthogonal Matching Pursuit (OMP)

    Solves n_targets Orthogonal Matching Pursuit problems using only
    the Gram matrix X.T * X and the product X.T * y.

    Parameters
    ----------
    Gram: array, shape = (n_features, n_features)
        Gram matrix of the input data: X.T * X

    Xy: array, shape = (n_features,) or (n_features, n_targets)
        Input targets multiplied by X: X.T * y

    n_nonzero_coefs: int
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol: float
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    norms_squared: array-like, shape = (n_targets,)
        Squared L2 norms of the lines of y. Required if tol is not None.

    copy_Gram: bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy: bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    Returns
    -------
    coef: array, shape = (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution

    See also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp
    lars_path
    decomposition.sparse_encode
    decomposition.sparse_encode_parallel

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    """
    Gram = np.asarray(Gram)
    Xy = np.asarray(Xy)
    if Xy.ndim == 1:
        Xy = Xy[:, np.newaxis]
        if tol is not None:
            norms_squared = [norms_squared]

    if n_nonzero_coefs == None and tol is None:
        n_nonzero_coefs = int(0.1 * len(Gram))
    if tol is not None and norms_squared == None:
        raise ValueError('Gram OMP needs the precomputed norms in order \
                          to evaluate the error sum of squares.')
    if tol is not None and tol < 0:
        raise ValueError("Epsilon cennot be negative")
    if tol is None and n_nonzero_coefs <= 0:
        raise ValueError("The number of atoms must be positive")
    if tol is None and n_nonzero_coefs > len(Gram):
        raise ValueError("The number of atoms cannot be more than the number \
                          of features")
    coef = np.zeros((len(Gram), Xy.shape[1]))
    for k in range(Xy.shape[1]):
        x, idx = _gram_omp(Gram, Xy[:, k], n_nonzero_coefs,
                           norms_squared[k] if tol is not None else None, tol,
                           copy_Gram=copy_Gram, copy_Xy=copy_Xy)
        coef[idx, k] = x
    return np.squeeze(coef)


class OrthogonalMatchingPursuit(LinearModel):
    """Orthogonal Mathching Pursuit model (OMP)

    Parameters
    ----------
    n_nonzero_coefs : int, optional
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float, optional
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional
        If False, the regressors X are assumed to be already normalized.

    precompute_gram : {True, False, 'auto'},
        Whether to use a precomputed Gram and Xy matrix to speed up
        calculations. Improves performance when `n_targets` or `n_samples` is
        very large. Note that if you already have such matrices, you can pass
        them directly to the fit method.

    copy_X : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Gram : bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.


    Attributes
    ----------
    `coef_` : array, shape = (n_features,) or (n_features, n_targets)
        parameter vector (w in the fomulation formula)

    `intercept_` : float or array, shape =(n_targets,)
        independent term in decision function.

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    See also
    --------
    orthogonal_mp
    orthogonal_mp_gram
    lars_path
    Lars
    LassoLars
    decomposition.sparse_encode
    decomposition.sparse_encode_parallel

    """
    def __init__(self, copy_X=True, copy_Gram=True,
            copy_Xy=True, n_nonzero_coefs=None, tol=None,
            fit_intercept=True, normalize=True, precompute_gram=False):
        self.n_nonzero_coefs = n_nonzero_coefs
        self.tol = tol
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.precompute_gram = precompute_gram
        self.copy_Gram = copy_Gram
        self.copy_Xy = copy_Xy
        self.copy_X = copy_X

    def fit(self, X, y, Gram=None, Xy=None):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X: array-like, shape = (n_samples, n_features)
            Training data.

        y: array-like, shape = (n_samples,) or (n_samples, n_targets)
            Target values.

        Gram: array-like, shape = (n_features, n_features) (optional)
            Gram matrix of the input data: X.T * X

        Xy: array-like, shape = (n_features,) or (n_features, n_targets)
            (optional)
            Input targets multiplied by X: X.T * y


        Returns
        -------
        self: object
            returns an instance of self.
        """
        X = array2d(X)
        y = np.asarray(y)
        n_features = X.shape[1]

        X, y, X_mean, y_mean, X_std = self._center_data(X, y,
                                                        self.fit_intercept,
                                                        self.normalize,
                                                        self.copy_X)

        if y.ndim == 1:
            y = y[:, np.newaxis]

        if self.n_nonzero_coefs == None and self.tol is None:
            self.n_nonzero_coefs = int(0.1 * n_features)
        if (Gram is not None or Xy is not None) and (self.fit_intercept is True
                                                 or self.normalize is True):
            warnings.warn('Mean subtraction (fit_intercept) and '
                 'normalization cannot be applied on precomputed Gram '
                 'and Xy matrices. Your precomputed values are ignored '
                 'and recomputed. To avoid this, do the scaling yourself '
                 'and call with fit_intercept and normalize set to False.',
                 RuntimeWarning, stacklevel=2)
            Gram, Xy = None, None

        if Gram is not None:
            Gram = array2d(Gram)

            if self.copy_Gram:
                copy_Gram = False
                Gram = Gram.copy('F')
            else:
                Gram = np.asfortranarray(Gram)

            copy_Gram = self.copy_Gram

            if y.shape[1] > 1:  # subsequent targets will be affected
                copy_Gram = True

            if Xy is None:
                Xy = np.dot(X.T, y)
            else:
                if self.copy_Xy:
                    Xy = Xy.copy()
                if self.normalize:
                    if len(Xy.shape) == 1:
                        Xy /= X_std
                    else:
                        Xy /= X_std[:, np.newaxis]

            if self.normalize:
                Gram /= X_std
                Gram /= X_std[:, np.newaxis]

            norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None
            self.coef_ = orthogonal_mp_gram(Gram, Xy, self.n_nonzero_coefs,
                                            self.tol, norms_sq,
                                            copy_Gram, True).T
        else:
            precompute_gram = self.precompute_gram
            if precompute_gram == 'auto':
                precompute_gram = X.shape[0] > X.shape[1]
            self.coef_ = orthogonal_mp(X, y, self.n_nonzero_coefs, self.tol,
                                       precompute_gram=self.precompute_gram,
                                       copy_X=self.copy_X).T

        self._set_intercept(X_mean, y_mean, X_std)
        return self