1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
"""Orthogonal matching pursuit algorithms
"""
# Author: Vlad Niculae
#
# License: BSD Style.
import warnings
import numpy as np
from scipy import linalg
from scipy.linalg.lapack import get_lapack_funcs
from .base import LinearModel
from ..utils import array2d
from ..utils.arrayfuncs import solve_triangular
premature = """ Orthogonal matching pursuit ended prematurely due to linear
dependence in the dictionary. The requested precision might not have been met.
"""
def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True):
"""Orthogonal Matching Pursuit step using the Cholesky decomposition.
Parameters:
-----------
X: array, shape = (n_samples, n_features)
Input dictionary. Columns are assumed to have unit norm.
y: array, shape = (n_samples,)
Input targets
n_nonzero_coefs: int
Targeted number of non-zero elements
tol: float
Targeted squared error, if not None overrides n_nonzero_coefs.
copy_X: bool, optional
Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
Returns:
--------
gamma: array, shape = (n_nonzero_coefs,)
Non-zero elements of the solution
idx: array, shape = (n_nonzero_coefs,)
Indices of the positions of the elements in gamma within the solution
vector
"""
if copy_X:
X = X.copy('F')
else: # even if we are allowed to overwrite, still copy it if bad order
X = np.asfortranarray(X)
min_float = np.finfo(X.dtype).eps
nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,))
potrs, = get_lapack_funcs(('potrs',), (X,))
alpha = np.dot(X.T, y)
residual = y
gamma = np.empty(0)
n_active = 0
indices = range(X.shape[1]) # keeping track of swapping
max_features = X.shape[1] if tol is not None else n_nonzero_coefs
L = np.empty((max_features, max_features), dtype=X.dtype)
L[0, 0] = 1.
while True:
lam = np.argmax(np.abs(np.dot(X.T, residual)))
if lam < n_active or alpha[lam] ** 2 < min_float:
# atom already selected or inner product too small
warnings.warn(premature, RuntimeWarning, stacklevel=2)
break
if n_active > 0:
# Updates the Cholesky decomposition of X' X
L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam])
solve_triangular(L[:n_active, :n_active], L[n_active, :n_active])
v = nrm2(L[n_active, :n_active]) ** 2
if 1 - v <= min_float: # selected atoms are dependent
warnings.warn(premature, RuntimeWarning, stacklevel=2)
break
L[n_active, n_active] = np.sqrt(1 - v)
X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam])
alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active]
indices[n_active], indices[lam] = indices[lam], indices[n_active]
n_active += 1
# solves LL'x = y as a composition of two triangular systems
gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True,
overwrite_b=False)
residual = y - np.dot(X[:, :n_active], gamma)
if tol is not None and nrm2(residual) ** 2 <= tol:
break
elif n_active == max_features:
break
return gamma, indices[:n_active]
def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
copy_Gram=True, copy_Xy=True):
"""Orthogonal Matching Pursuit step on a precomputed Gram matrix.
This function uses the the Cholesky decomposition method.
Parameters:
-----------
Gram: array, shape = (n_features, n_features)
Gram matrix of the input data matrix
Xy: array, shape = (n_features,)
Input targets
n_nonzero_coefs: int
Targeted number of non-zero elements
tol_0: float
Squared norm of y, required if tol is not None.
tol: float
Targeted squared error, if not None overrides n_nonzero_coefs.
copy_Gram: bool, optional
Whether the gram matrix must be copied by the algorithm. A false
value is only helpful if it is already Fortran-ordered, otherwise a
copy is made anyway.
copy_Xy: bool, optional
Whether the covariance vector Xy must be copied by the algorithm.
If False, it may be overwritten.
Returns:
--------
gamma: array, shape = (n_nonzero_coefs,)
Non-zero elements of the solution
idx: array, shape = (n_nonzero_coefs,)
Indices of the positions of the elements in gamma within the solution
vector
"""
Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram)
if copy_Xy:
Xy = Xy.copy()
min_float = np.finfo(Gram.dtype).eps
nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,))
potrs, = get_lapack_funcs(('potrs',), (Gram,))
indices = range(len(Gram)) # keeping track of swapping
alpha = Xy
tol_curr = tol_0
delta = 0
gamma = np.empty(0)
n_active = 0
max_features = len(Gram) if tol is not None else n_nonzero_coefs
L = np.empty((max_features, max_features), dtype=Gram.dtype)
L[0, 0] = 1.
while True:
lam = np.argmax(np.abs(alpha))
if lam < n_active or alpha[lam] ** 2 < min_float:
# selected same atom twice, or inner product too small
warnings.warn(premature, RuntimeWarning, stacklevel=2)
break
if n_active > 0:
L[n_active, :n_active] = Gram[lam, :n_active]
solve_triangular(L[:n_active, :n_active], L[n_active, :n_active])
v = nrm2(L[n_active, :n_active]) ** 2
if 1 - v <= min_float: # selected atoms are dependent
warnings.warn(premature, RuntimeWarning, stacklevel=2)
break
L[n_active, n_active] = np.sqrt(1 - v)
Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam])
Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam])
indices[n_active], indices[lam] = indices[lam], indices[n_active]
Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active]
n_active += 1
# solves LL'x = y as a composition of two triangular systems
gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True,
overwrite_b=False)
beta = np.dot(Gram[:, :n_active], gamma)
alpha = Xy - beta
if tol is not None:
tol_curr += delta
delta = np.inner(gamma, beta[:n_active])
tol_curr -= delta
if tol_curr <= tol:
break
elif n_active == max_features:
break
return gamma, indices[:n_active]
def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute_gram=False,
copy_X=True):
"""Orthogonal Matching Pursuit (OMP)
Solves n_targets Orthogonal Matching Pursuit problems.
An instance of the problem has the form:
When parametrized by the number of non-zero coefficients using
`n_nonzero_coefs`:
argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs}
When parametrized by error using the parameter `tol`:
argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol
Parameters
----------
X: array, shape = (n_samples, n_features)
Input data. Columns are assumed to have unit norm.
y: array, shape = (n_samples,) or (n_samples, n_targets)
Input targets
n_nonzero_coefs: int
Desired number of non-zero entries in the solution. If None (by
default) this value is set to 10% of n_features.
tol: float
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
precompute_gram: {True, False, 'auto'},
Whether to perform precomputations. Improves performance when n_targets
or n_samples is very large.
copy_X: bool, optional
Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
Returns
-------
coef: array, shape = (n_features,) or (n_features, n_targets)
Coefficients of the OMP solution
See also
--------
OrthogonalMatchingPursuit
orthogonal_mp_gram
lars_path
decomposition.sparse_encode
decomposition.sparse_encode_parallel
Notes
-----
Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
Matching pursuits with time-frequency dictionaries, IEEE Transactions on
Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)
This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
"""
X = np.asarray(X)
y = np.asarray(y)
if y.ndim == 1:
y = y[:, np.newaxis]
if copy_X:
X = X.copy('F')
copy_X = False
else:
X = np.asfortranarray(X)
if y.shape[1] > 1: # subsequent targets will be affected
copy_X = True
if n_nonzero_coefs == None and tol == None:
n_nonzero_coefs = int(0.1 * X.shape[1])
if tol is not None and tol < 0:
raise ValueError("Epsilon cannot be negative")
if tol is None and n_nonzero_coefs <= 0:
raise ValueError("The number of atoms must be positive")
if tol is None and n_nonzero_coefs > X.shape[1]:
raise ValueError("The number of atoms cannot be more than the number \
of features")
if precompute_gram == 'auto':
precompute_gram = X.shape[0] > X.shape[1]
if precompute_gram:
G = np.dot(X.T, X)
G = np.asfortranarray(G)
Xy = np.dot(X.T, y)
if tol is not None:
norms_squared = np.sum((y ** 2), axis=0)
else:
norms_squared = None
return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared,
copy_Gram=copy_X, copy_Xy=False)
coef = np.zeros((X.shape[1], y.shape[1]))
for k in xrange(y.shape[1]):
x, idx = _cholesky_omp(X, y[:, k], n_nonzero_coefs, tol,
copy_X=copy_X)
coef[idx, k] = x
return np.squeeze(coef)
def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None,
norms_squared=None, copy_Gram=True,
copy_Xy=True):
"""Gram Orthogonal Matching Pursuit (OMP)
Solves n_targets Orthogonal Matching Pursuit problems using only
the Gram matrix X.T * X and the product X.T * y.
Parameters
----------
Gram: array, shape = (n_features, n_features)
Gram matrix of the input data: X.T * X
Xy: array, shape = (n_features,) or (n_features, n_targets)
Input targets multiplied by X: X.T * y
n_nonzero_coefs: int
Desired number of non-zero entries in the solution. If None (by
default) this value is set to 10% of n_features.
tol: float
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
norms_squared: array-like, shape = (n_targets,)
Squared L2 norms of the lines of y. Required if tol is not None.
copy_Gram: bool, optional
Whether the gram matrix must be copied by the algorithm. A false
value is only helpful if it is already Fortran-ordered, otherwise a
copy is made anyway.
copy_Xy: bool, optional
Whether the covariance vector Xy must be copied by the algorithm.
If False, it may be overwritten.
Returns
-------
coef: array, shape = (n_features,) or (n_features, n_targets)
Coefficients of the OMP solution
See also
--------
OrthogonalMatchingPursuit
orthogonal_mp
lars_path
decomposition.sparse_encode
decomposition.sparse_encode_parallel
Notes
-----
Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
Matching pursuits with time-frequency dictionaries, IEEE Transactions on
Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)
This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
"""
Gram = np.asarray(Gram)
Xy = np.asarray(Xy)
if Xy.ndim == 1:
Xy = Xy[:, np.newaxis]
if tol is not None:
norms_squared = [norms_squared]
if n_nonzero_coefs == None and tol is None:
n_nonzero_coefs = int(0.1 * len(Gram))
if tol is not None and norms_squared == None:
raise ValueError('Gram OMP needs the precomputed norms in order \
to evaluate the error sum of squares.')
if tol is not None and tol < 0:
raise ValueError("Epsilon cennot be negative")
if tol is None and n_nonzero_coefs <= 0:
raise ValueError("The number of atoms must be positive")
if tol is None and n_nonzero_coefs > len(Gram):
raise ValueError("The number of atoms cannot be more than the number \
of features")
coef = np.zeros((len(Gram), Xy.shape[1]))
for k in range(Xy.shape[1]):
x, idx = _gram_omp(Gram, Xy[:, k], n_nonzero_coefs,
norms_squared[k] if tol is not None else None, tol,
copy_Gram=copy_Gram, copy_Xy=copy_Xy)
coef[idx, k] = x
return np.squeeze(coef)
class OrthogonalMatchingPursuit(LinearModel):
"""Orthogonal Mathching Pursuit model (OMP)
Parameters
----------
n_nonzero_coefs : int, optional
Desired number of non-zero entries in the solution. If None (by
default) this value is set to 10% of n_features.
tol : float, optional
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
fit_intercept : boolean, optional
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If False, the regressors X are assumed to be already normalized.
precompute_gram : {True, False, 'auto'},
Whether to use a precomputed Gram and Xy matrix to speed up
calculations. Improves performance when `n_targets` or `n_samples` is
very large. Note that if you already have such matrices, you can pass
them directly to the fit method.
copy_X : bool, optional
Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
copy_Gram : bool, optional
Whether the gram matrix must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a
copy is made anyway.
copy_Xy : bool, optional
Whether the covariance vector Xy must be copied by the algorithm.
If False, it may be overwritten.
Attributes
----------
`coef_` : array, shape = (n_features,) or (n_features, n_targets)
parameter vector (w in the fomulation formula)
`intercept_` : float or array, shape =(n_targets,)
independent term in decision function.
Notes
-----
Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
Matching pursuits with time-frequency dictionaries, IEEE Transactions on
Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)
This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
Matching Pursuit Technical Report - CS Technion, April 2008.
http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
See also
--------
orthogonal_mp
orthogonal_mp_gram
lars_path
Lars
LassoLars
decomposition.sparse_encode
decomposition.sparse_encode_parallel
"""
def __init__(self, copy_X=True, copy_Gram=True,
copy_Xy=True, n_nonzero_coefs=None, tol=None,
fit_intercept=True, normalize=True, precompute_gram=False):
self.n_nonzero_coefs = n_nonzero_coefs
self.tol = tol
self.fit_intercept = fit_intercept
self.normalize = normalize
self.precompute_gram = precompute_gram
self.copy_Gram = copy_Gram
self.copy_Xy = copy_Xy
self.copy_X = copy_X
def fit(self, X, y, Gram=None, Xy=None):
"""Fit the model using X, y as training data.
Parameters
----------
X: array-like, shape = (n_samples, n_features)
Training data.
y: array-like, shape = (n_samples,) or (n_samples, n_targets)
Target values.
Gram: array-like, shape = (n_features, n_features) (optional)
Gram matrix of the input data: X.T * X
Xy: array-like, shape = (n_features,) or (n_features, n_targets)
(optional)
Input targets multiplied by X: X.T * y
Returns
-------
self: object
returns an instance of self.
"""
X = array2d(X)
y = np.asarray(y)
n_features = X.shape[1]
X, y, X_mean, y_mean, X_std = self._center_data(X, y,
self.fit_intercept,
self.normalize,
self.copy_X)
if y.ndim == 1:
y = y[:, np.newaxis]
if self.n_nonzero_coefs == None and self.tol is None:
self.n_nonzero_coefs = int(0.1 * n_features)
if (Gram is not None or Xy is not None) and (self.fit_intercept is True
or self.normalize is True):
warnings.warn('Mean subtraction (fit_intercept) and '
'normalization cannot be applied on precomputed Gram '
'and Xy matrices. Your precomputed values are ignored '
'and recomputed. To avoid this, do the scaling yourself '
'and call with fit_intercept and normalize set to False.',
RuntimeWarning, stacklevel=2)
Gram, Xy = None, None
if Gram is not None:
Gram = array2d(Gram)
if self.copy_Gram:
copy_Gram = False
Gram = Gram.copy('F')
else:
Gram = np.asfortranarray(Gram)
copy_Gram = self.copy_Gram
if y.shape[1] > 1: # subsequent targets will be affected
copy_Gram = True
if Xy is None:
Xy = np.dot(X.T, y)
else:
if self.copy_Xy:
Xy = Xy.copy()
if self.normalize:
if len(Xy.shape) == 1:
Xy /= X_std
else:
Xy /= X_std[:, np.newaxis]
if self.normalize:
Gram /= X_std
Gram /= X_std[:, np.newaxis]
norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None
self.coef_ = orthogonal_mp_gram(Gram, Xy, self.n_nonzero_coefs,
self.tol, norms_sq,
copy_Gram, True).T
else:
precompute_gram = self.precompute_gram
if precompute_gram == 'auto':
precompute_gram = X.shape[0] > X.shape[1]
self.coef_ = orthogonal_mp(X, y, self.n_nonzero_coefs, self.tol,
precompute_gram=self.precompute_gram,
copy_X=self.copy_X).T
self._set_intercept(X_mean, y_mean, X_std)
return self
|