1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
"""
Ridge regression
"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
# License: Simplified BSD
import warnings
import numpy as np
from .base import LinearModel
from ..utils.extmath import safe_sparse_dot
from ..utils import safe_asarray
from ..preprocessing import LabelBinarizer
from ..grid_search import GridSearchCV
def _solve(A, b, solver, tol):
# helper method for ridge_regression, A is symmetric positive
if solver == 'auto':
if hasattr(A, 'todense'):
solver = 'sparse_cg'
else:
solver = 'dense_cholesky'
if solver == 'sparse_cg':
if b.ndim < 2:
from scipy.sparse import linalg as sp_linalg
sol, error = sp_linalg.cg(A, b, tol=tol)
if error:
raise ValueError("Failed with error code %d" % error)
return sol
else:
# sparse_cg cannot handle a 2-d b.
sol = []
for j in range(b.shape[1]):
sol.append(_solve(A, b[:, j], solver="sparse_cg", tol=tol))
return np.array(sol).T
elif solver == 'dense_cholesky':
from scipy import linalg
if hasattr(A, 'todense'):
A = A.todense()
return linalg.solve(A, b, sym_pos=True, overwrite_a=True)
else:
raise NotImplementedError('Solver %s not implemented' % solver)
def ridge_regression(X, y, alpha, sample_weight=1.0, solver='auto', tol=1e-3):
"""Solve the ridge equation by the method of normal equations.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or numpy array of shape [n_samples]
Individual weights for each sample
solver : {'auto', 'dense_cholesky', 'sparse_cg'}, optional
Solver to use in the computational routines. 'delse_cholesky'
will use the standard scipy.linalg.solve function, 'sparse_cg'
will use the conjugate gradient solver as found in
scipy.sparse.linalg.cg while 'auto' will chose the most
appropriate depending on the matrix X.
tol: float
Precision of the solution.
Returns
-------
coef: array, shape = [n_features] or [n_responses, n_features]
Weight vector(s).
Notes
-----
This function won't compute the intercept.
"""
n_samples, n_features = X.shape
is_sparse = False
if hasattr(X, 'todense'): # lazy import of scipy.sparse
from scipy import sparse
is_sparse = sparse.issparse(X)
if is_sparse:
if n_features > n_samples or \
isinstance(sample_weight, np.ndarray) or \
sample_weight != 1.0:
I = sparse.lil_matrix((n_samples, n_samples))
I.setdiag(np.ones(n_samples) * alpha * sample_weight)
c = _solve(X * X.T + I, y, solver, tol)
coef = X.T * c
else:
I = sparse.lil_matrix((n_features, n_features))
I.setdiag(np.ones(n_features) * alpha)
coef = _solve(X.T * X + I, X.T * y, solver, tol)
else:
if n_features > n_samples or \
isinstance(sample_weight, np.ndarray) or \
sample_weight != 1.0:
# kernel ridge
# w = X.T * inv(X X^t + alpha*Id) y
A = np.dot(X, X.T)
A.flat[::n_samples + 1] += alpha * sample_weight
coef = np.dot(X.T, _solve(A, y, solver, tol))
else:
# ridge
# w = inv(X^t X + alpha*Id) * X.T y
A = np.dot(X.T, X)
A.flat[::n_features + 1] += alpha
coef = _solve(A, np.dot(X.T, y), solver, tol)
return coef.T
class Ridge(LinearModel):
"""Linear least squares with l2 regularization.
This model solves a regression model where the loss function is
the linear least squares function and regularization is given by
the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
This estimator has built-in support for multi-variate regression
(i.e., when y is a 2d-array of shape [n_samples, n_responses]).
Parameters
----------
alpha : float
Small positive values of alpha improve the conditioning of the
problem and reduce the variance of the estimates.
Alpha corresponds to (2*C)^-1 in other linear models such as
LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
tol: float
Precision of the solution.
Attributes
----------
`coef_` : array, shape = [n_features] or [n_responses, n_features]
Weight vector(s).
See also
--------
RidgeClassifier, RidgeCV
Examples
--------
>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE
Ridge(alpha=1.0, copy_X=True, fit_intercept=True, normalize=False,
tol=0.001)
"""
def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, tol=1e-3):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.tol = tol
def fit(self, X, y, sample_weight=1.0, solver='auto'):
"""Fit Ridge regression model
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or numpy array of shape [n_samples]
Individual weights for each sample
solver : {'auto', 'dense_cholesky', 'sparse_cg'}
Solver to use in the computational
routines. 'delse_cholesky' will use the standard
scipy.linalg.solve function, 'sparse_cg' will use the
conjugate gradient solver as found in
scipy.sparse.linalg.cg while 'auto' will chose the most
appropriate depending on the matrix X.
Returns
-------
self : returns an instance of self.
"""
X = safe_asarray(X, dtype=np.float)
y = np.asarray(y, dtype=np.float)
X, y, X_mean, y_mean, X_std = \
self._center_data(X, y, self.fit_intercept,
self.normalize, self.copy_X)
self.coef_ = ridge_regression(X, y, self.alpha, sample_weight,
solver, self.tol)
self._set_intercept(X_mean, y_mean, X_std)
return self
class RidgeClassifier(Ridge):
"""Classifier using Ridge regression.
Parameters
----------
alpha : float
Small positive values of alpha improve the conditioning of the
problem and reduce the variance of the estimates.
Alpha corresponds to (2*C)^-1 in other linear models such as
LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
tol: float
Precision of the solution.
class_weight : dict, optional
Weights associated with classes in the form
{class_label : weight}. If not given, all classes are
supposed to have weight one.
Attributes
----------
`coef_` : array, shape = [n_features] or [n_classes, n_features]
Weight vector(s).
See also
--------
Ridge, RidgeClassifierCV
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
"""
def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
copy_X=True, tol=1e-3, class_weight=None):
super(RidgeClassifier, self).__init__(alpha=alpha,
fit_intercept=fit_intercept, normalize=normalize,
copy_X=copy_X, tol=tol)
self.class_weight = class_weight
def fit(self, X, y, solver='auto'):
"""Fit Ridge regression model.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples,n_features]
Training data
y : array-like, shape = [n_samples]
Target values
solver : {'auto', 'dense_cholesky', 'sparse_cg'}
Solver to use in the computational
routines. 'delse_cholesky' will use the standard
scipy.linalg.solve function, 'sparse_cg' will use the
conjugate gradient solver as found in
scipy.sparse.linalg.cg while 'auto' will chose the most
appropriate depending on the matrix X.
Returns
-------
self : returns an instance of self.
"""
if self.class_weight is None:
class_weight = {}
else:
class_weight = self.class_weight
sample_weight_classes = np.array([class_weight.get(k, 1.0) for k in y])
self.label_binarizer = LabelBinarizer()
Y = self.label_binarizer.fit_transform(y)
Ridge.fit(self, X, Y, solver=solver, sample_weight=sample_weight_classes)
return self
def decision_function(self, X):
return Ridge.decision_function(self, X)
def predict(self, X):
"""Predict target values according to the fitted model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
y : array, shape = [n_samples]
"""
Y = self.decision_function(X)
return self.label_binarizer.inverse_transform(Y)
class _RidgeGCV(LinearModel):
"""Ridge regression with built-in Generalized Cross-Validation
It allows efficient Leave-One-Out cross-validation.
This class is not intended to be used directly. Use RidgeCV instead.
Notes
-----
We want to solve (K + alpha*Id)c = y,
where K = X X^T is the kernel matrix.
Let G = (K + alpha*Id)^-1.
Dual solution: c = Gy
Primal solution: w = X^T c
Compute eigendecomposition K = Q V Q^T.
Then G = Q (V + alpha*Id)^-1 Q^T,
where (V + alpha*Id) is diagonal.
It is thus inexpensive to inverse for many alphas.
Let loov be the vector of prediction values for each example
when the model was fitted with all examples but this example.
loov = (KGY - diag(KG)Y) / diag(I-KG)
Let looe be the vector of prediction errors for each example
when the model was fitted with all examples but this example.
looe = y - loov = c / diag(G)
References
----------
http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf
http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
"""
def __init__(self, alphas=[0.1, 1.0, 10.0], fit_intercept=True,
normalize=False, score_func=None, loss_func=None, copy_X=True,
gcv_mode=None):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
self.score_func = score_func
self.loss_func = loss_func
self.copy_X = copy_X
self.gcv_mode = gcv_mode
def _pre_compute(self, X, y):
# even if X is very sparse, K is usually very dense
K = safe_sparse_dot(X, X.T, dense_output=True)
from scipy import linalg
v, Q = linalg.eigh(K)
QT_y = np.dot(Q.T, y)
return v, Q, QT_y
def _decomp_diag(self, v_prime, Q):
# compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
return (v_prime * Q ** 2).sum(axis=-1)
def _diag_dot(self, D, B):
# compute dot(diag(D), B)
if len(B.shape) > 1:
# handle case where B is > 1-d
D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)]
return D * B
def _errors(self, alpha, y, v, Q, QT_y):
# don't construct matrix G, instead compute action on y & diagonal
w = 1.0 / (v + alpha)
c = np.dot(Q, self._diag_dot(w, QT_y))
G_diag = self._decomp_diag(w, Q)
# handle case where y is 2-d
if len(y.shape) != 1:
G_diag = G_diag[:, np.newaxis]
return (c / G_diag) ** 2, c
def _values(self, alpha, y, v, Q, QT_y):
# don't construct matrix G, instead compute action on y & diagonal
w = 1.0 / (v + alpha)
c = np.dot(Q, self._diag_dot(w, QT_y))
G_diag = self._decomp_diag(w, Q)
# handle case where y is 2-d
if len(y.shape) != 1:
G_diag = G_diag[:, np.newaxis]
return y - (c / G_diag), c
def _pre_compute_svd(self, X, y):
from scipy import sparse
if sparse.issparse(X) and hasattr(X, 'toarray'):
X = X.toarray()
U, s, _ = np.linalg.svd(X, full_matrices=0)
v = s ** 2
UT_y = np.dot(U.T, y)
return v, U, UT_y
def _errors_svd(self, alpha, y, v, U, UT_y):
w = ((v + alpha) ** -1) - (alpha ** -1)
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
if len(y.shape) != 1:
# handle case where y is 2-d
G_diag = G_diag[:, np.newaxis]
return (c / G_diag) ** 2, c
def _values_svd(self, alpha, y, v, U, UT_y):
w = ((v + alpha) ** -1) - (alpha ** -1)
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
if len(y.shape) != 1:
# handle case when y is 2-d
G_diag = G_diag[:, np.newaxis]
return y - (c / G_diag), c
def fit(self, X, y, sample_weight=1.0):
"""Fit Ridge regression model
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or array-like of shape [n_samples]
Sample weight
Returns
-------
self : Returns self.
"""
X = safe_asarray(X, dtype=np.float)
y = np.asarray(y, dtype=np.float)
n_samples, n_features = X.shape
X, y, X_mean, y_mean, X_std = LinearModel._center_data(X, y,
self.fit_intercept, self.normalize, self.copy_X)
gcv_mode = self.gcv_mode
with_sw = len(np.shape(sample_weight))
if gcv_mode is None or gcv_mode == 'auto':
if n_features > n_samples or with_sw:
gcv_mode = 'eigen'
else:
gcv_mode = 'svd'
elif gcv_mode == "svd" and with_sw:
# FIXME non-uniform sample weights not yet supported
warnings.warn("non-uniform sample weights unsupported for svd, "
"forcing usage of eigen")
gcv_mode = 'eigen'
if gcv_mode == 'eigen':
_pre_compute = self._pre_compute
_errors = self._errors
_values = self._values
elif gcv_mode == 'svd':
# assert n_samples >= n_features
_pre_compute = self._pre_compute_svd
_errors = self._errors_svd
_values = self._values_svd
else:
raise ValueError('bad gcv_mode "%s"' % gcv_mode)
v, Q, QT_y = _pre_compute(X, y)
n_y = 1 if len(y.shape) == 1 else y.shape[1]
M = np.zeros((n_samples * n_y, len(self.alphas)))
C = []
error = self.score_func is None and self.loss_func is None
for i, alpha in enumerate(self.alphas):
if error:
out, c = _errors(sample_weight * alpha, y, v, Q, QT_y)
else:
out, c = _values(sample_weight * alpha, y, v, Q, QT_y)
M[:, i] = out.ravel()
C.append(c)
if error:
best = M.mean(axis=0).argmin()
else:
func = self.score_func if self.score_func else self.loss_func
out = [func(y.ravel(), M[:, i]) for i in range(len(self.alphas))]
best = np.argmax(out) if self.score_func else np.argmin(out)
self.best_alpha = self.alphas[best]
self.dual_coef_ = C[best]
self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
self._set_intercept(X_mean, y_mean, X_std)
return self
class RidgeCV(LinearModel):
"""Ridge regression with built-in cross-validation.
By default, it performs Generalized Cross-Validation, which is a form of
efficient Leave-One-Out cross-validation.
Parameters
----------
alphas: numpy array of shape [n_alpha]
Array of alpha values to try.
Small positive values of alpha improve the conditioning of the
problem and reduce the variance of the estimates.
Alpha corresponds to ``(2*C)^-1`` in other linear models such as
LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
score_func: callable, optional
function that takes 2 arguments and compares them in
order to evaluate the performance of prediction (big is good)
if None is passed, the score of the estimator is maximized
loss_func: callable, optional
function that takes 2 arguments and compares them in
order to evaluate the performance of prediction (small is good)
if None is passed, the score of the estimator is maximized
cv : cross-validation generator, optional
If None, Generalized Cross-Validation (efficient Leave-One-Out)
will be used.
Attributes
----------
`coef_` : array, shape = [n_features] or [n_classes, n_features]
Weight vector(s).
gcv_mode : {None, 'auto', 'svd', eigen'}, optional
Flag indicating which strategy to use when performing
Generalized Cross-Validation. Options are::
'auto' : use svd if n_samples > n_features, otherwise use eigen
'svd' : force computation via singular value decomposition of X
'eigen' : force computation via eigendecomposition of X^T X
The 'auto' mode is the default and is intended to pick the cheaper \
option of the two depending upon the shape of the training data.
See also
--------
Ridge: Ridge regression
RidgeClassifier: Ridge classifier
RidgeCV: Ridge regression with built-in cross validation
"""
def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True,
normalize=False, score_func=None, loss_func=None, cv=None,
gcv_mode=None):
self.alphas = alphas
self.fit_intercept = fit_intercept
self.normalize = normalize
self.score_func = score_func
self.loss_func = loss_func
self.cv = cv
self.gcv_mode = gcv_mode
def fit(self, X, y, sample_weight=1.0):
"""Fit Ridge regression model
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or array-like of shape [n_samples]
Sample weight
Returns
-------
self : Returns self.
"""
if self.cv is None:
estimator = _RidgeGCV(self.alphas, self.fit_intercept,
self.score_func, self.loss_func, gcv_mode=self.gcv_mode)
estimator.fit(X, y, sample_weight=sample_weight)
self.best_alpha = estimator.best_alpha
else:
parameters = {'alpha': self.alphas}
# FIXME: sample_weight must be split into training/validation data
# too!
#fit_params = {'sample_weight' : sample_weight}
fit_params = {}
gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept),
parameters, fit_params=fit_params, cv=self.cv)
gs.fit(X, y)
estimator = gs.best_estimator_
self.best_alpha = gs.best_estimator_.alpha
self.coef_ = estimator.coef_
self.intercept_ = estimator.intercept_
return self
class RidgeClassifierCV(RidgeCV):
"""Ridge classifier with built-in cross-validation.
By default, it performs Generalized Cross-Validation, which is a form of
efficient Leave-One-Out cross-validation. Currently, only the n_features >
n_samples case is handled efficiently.
Parameters
----------
alphas: numpy array of shape [n_alpha]
Array of alpha values to try.
Small positive values of alpha improve the conditioning of the
problem and reduce the variance of the estimates.
Alpha corresponds to (2*C)^-1 in other linear models such as
LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
score_func: callable, optional
function that takes 2 arguments and compares them in
order to evaluate the performance of prediction (big is good)
if None is passed, the score of the estimator is maximized
loss_func: callable, optional
function that takes 2 arguments and compares them in
order to evaluate the performance of prediction (small is good)
if None is passed, the score of the estimator is maximized
cv : cross-validation generator, optional
If None, Generalized Cross-Validation (efficient Leave-One-Out)
will be used.
class_weight : dict, optional
Weights associated with classes in the form
{class_label : weight}. If not given, all classes are
supposed to have weight one.
See also
--------
Ridge: Ridge regression
RidgeClassifier: Ridge classifier
RidgeCV: Ridge regression with built-in cross validation
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
"""
def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True,
normalize=False, score_func=None, loss_func=None, cv=None,
class_weight=None):
super(RidgeClassifierCV, self).__init__(alphas=alphas,
fit_intercept=fit_intercept, normalize=normalize,
score_func=score_func, loss_func=loss_func, cv=cv)
self.class_weight = class_weight
def fit(self, X, y, sample_weight=1.0, class_weight=None):
"""Fit the ridge classifier.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
sample_weight : float or numpy array of shape [n_samples]
Sample weight
class_weight : dict, optional
Weights associated with classes in the form
{class_label : weight}. If not given, all classes are
supposed to have weight one.
Returns
-------
self : object
Returns self.
"""
if class_weight != None:
warnings.warn("'class_weight' is now an initialization parameter."
"Using it in the 'fit' method is deprecated.",
DeprecationWarning)
self.class_weight_ = class_weight
else:
self.class_weight_ = self.class_weight
if self.class_weight_ is None:
self.class_weight_ = {}
sample_weight2 = np.array([self.class_weight_.get(k, 1.0) for k in y])
self.label_binarizer = LabelBinarizer()
Y = self.label_binarizer.fit_transform(y)
RidgeCV.fit(self, X, Y, sample_weight=sample_weight * sample_weight2)
return self
def decision_function(self, X):
return RidgeCV.decision_function(self, X)
def predict(self, X):
"""Predict target values according to the fitted model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
y : array, shape = [n_samples]
"""
Y = self.decision_function(X)
return self.label_binarizer.inverse_transform(Y)
|