1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
# encoding: utf-8
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
#
# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD Style.
import numpy as np
import sys
from time import time
cimport numpy as np
cimport cython
from sklearn.utils.weight_vector cimport WeightVector
from sklearn.utils.seq_dataset cimport SequentialDataset
cdef extern from "math.h":
cdef extern double exp(double x)
cdef extern double log(double x)
cdef extern double sqrt(double x)
cdef extern double pow(double x, double y)
ctypedef np.float64_t DOUBLE
ctypedef np.int32_t INTEGER
# Penalty constans
DEF NO_PENALTY = 0
DEF L1 = 1
DEF L2 = 2
DEF ELASTICNET = 3
# Learning rate constants
DEF CONSTANT = 1
DEF OPTIMAL = 2
DEF INVSCALING = 3
# ----------------------------------------
# Extension Types for Loss Functions
# ----------------------------------------
cdef class LossFunction:
"""Base class for convex loss functions"""
cpdef double loss(self, double p, double y):
"""Evaluate the loss function.
Parameters
----------
p : double
The prediction, p = w^T x
y : double
The true value (aka target)
Returns
-------
double
The loss evaluated at `p` and `y`.
"""
raise NotImplementedError()
cpdef double dloss(self, double p, double y):
"""Evaluate the derivative of the loss function with respect to
the prediction `p`.
Parameters
----------
p : double
The prediction, p = w^T x
y : double
The true value (aka target)
Returns
-------
double
The derivative of the loss function w.r.t. `p`.
"""
raise NotImplementedError()
cdef class Regression(LossFunction):
"""Base class for loss functions for regression"""
cpdef double loss(self, double p, double y):
raise NotImplementedError()
cpdef double dloss(self, double p, double y):
raise NotImplementedError()
cdef class Classification(LossFunction):
"""Base class for loss functions for classification"""
cpdef double loss(self, double p, double y):
raise NotImplementedError()
cpdef double dloss(self, double p, double y):
raise NotImplementedError()
cdef class ModifiedHuber(Classification):
"""Modified Huber loss for binary classification with y in {-1, 1}
This is equivalent to quadratically smoothed SVM with gamma = 2.
See T. Zhang 'Solving Large Scale Linear Prediction Problems Using
Stochastic Gradient Descent', ICML'04.
"""
cpdef double loss(self, double p, double y):
cdef double z = p * y
if z >= 1.0:
return 0.0
elif z >= -1.0:
return (1.0 - z) * (1.0 - z)
else:
return -4.0 * z
cpdef double dloss(self, double p, double y):
cdef double z = p * y
if z >= 1.0:
return 0.0
elif z >= -1.0:
return 2.0 * (1.0 - z) * -y
else:
return -4.0 * y
def __reduce__(self):
return ModifiedHuber, ()
cdef class Hinge(Classification):
"""Hinge loss for binary classification tasks with y in {-1,1}
Parameters
----------
threshold : float > 0.0
Margin threshold. When threshold=1.0, one gets the loss used by SVM.
When threshold=0.0, one gets the loss used by the Perceptron.
"""
cdef double threshold
def __init__(self, double threshold=1.0):
self.threshold = threshold
cpdef double loss(self, double p, double y):
cdef double z = p * y
if z <= self.threshold:
return (self.threshold - z)
return 0.0
cpdef double dloss(self, double p, double y):
cdef double z = p * y
if z <= self.threshold:
return -y
return 0.0
def __reduce__(self):
return Hinge, (self.threshold,)
cdef class Log(Classification):
"""Logistic regression loss for binary classification with y in {-1, 1}"""
cpdef double loss(self, double p, double y):
cdef double z = p * y
# approximately equal and saves the computation of the log
if z > 18:
return exp(-z)
if z < -18:
return -z
return log(1.0 + exp(-z))
cpdef double dloss(self, double p, double y):
cdef double z = p * y
# approximately equal and saves the computation of the log
if z > 18.0:
return exp(-z) * -y
if z < -18.0:
return -y
return -y / (exp(z) + 1.0)
def __reduce__(self):
return Log, ()
cdef class SquaredLoss(Regression):
"""Squared loss traditional used in linear regression."""
cpdef double loss(self, double p, double y):
return 0.5 * (p - y) * (p - y)
cpdef double dloss(self, double p, double y):
return p - y
def __reduce__(self):
return SquaredLoss, ()
cdef class Huber(Regression):
"""Huber regression loss
Variant of the SquaredLoss that is robust to outliers (quadratic near zero,
linear in for large errors).
http://en.wikipedia.org/wiki/Huber_Loss_Function
"""
cdef double c
def __init__(self, double c):
self.c = c
cpdef double loss(self, double p, double y):
cdef double r = p - y
cdef double abs_r = abs(r)
if abs_r <= self.c:
return 0.5 * r * r
else:
return self.c * abs_r - (0.5 * self.c * self.c)
cpdef double dloss(self, double p, double y):
cdef double r = p - y
cdef double abs_r = abs(r)
if abs_r <= self.c:
return r
elif r > 0.0:
return self.c
else:
return -self.c
def __reduce__(self):
return Huber, (self.c,)
def plain_sgd(np.ndarray[DOUBLE, ndim=1, mode='c'] weights,
double intercept,
LossFunction loss,
int penalty_type,
double alpha, double rho,
SequentialDataset dataset,
int n_iter, int fit_intercept,
int verbose, int shuffle, int seed,
double weight_pos, double weight_neg,
int learning_rate, double eta0,
double power_t,
double t=1.0,
double intercept_decay=1.0):
"""Plain SGD for generic loss functions and penalties.
Parameters
----------
weights : ndarray[double, ndim=1]
The allocated coef_ vector.
intercept : double
The initial intercept.
loss : LossFunction
A concrete ``LossFunction`` object.
penalty_type : int
The penalty 2 for L2, 1 for L1, and 3 for Elastic-Net.
alpha : float
The regularization parameter.
rho : float
The elastic net hyperparameter.
dataset : SequentialDataset
A concrete ``SequentialDataset`` object.
n_iter : int
The number of iterations (epochs).
fit_intercept : int
Whether or not to fit the intercept (1 or 0).
verbose : int
Print verbose output; 0 for quite.
shuffle : int
Whether to shuffle the training data before each epoch.
weight_pos : float
The weight of the positive class.
weight_neg : float
The weight of the negative class.
seed : int
The seed of the pseudo random number generator to use when
shuffling the data
learning_rate : int
The learning rate:
(1) constant, eta = eta0
(2) optimal, eta = 1.0/(t+t0)
(3) inverse scaling, eta = eta0 / pow(t, power_t)
eta0 : double
The initial learning rate.
power_t : double
The exponent for inverse scaling learning rate.
t : double
Initial state of the learning rate. This value is equal to the
iteration count except when the learning rate is set to `optimal`.
Default: 1.0.
Returns
-------
weights : array, shape=[n_features]
The fitted weight vector.
intercept : float
The fitted intercept term.
"""
# get the data information into easy vars
cdef Py_ssize_t n_samples = dataset.n_samples
cdef Py_ssize_t n_features = weights.shape[0]
cdef WeightVector w = WeightVector(weights)
cdef DOUBLE *x_data_ptr = NULL
cdef INTEGER *x_ind_ptr = NULL
# helper variable
cdef int xnnz
cdef double eta = 0.0
cdef double p = 0.0
cdef double update = 0.0
cdef double sumloss = 0.0
cdef DOUBLE y = 0.0
cdef DOUBLE sample_weight
cdef double class_weight = 1.0
cdef unsigned int count = 0
cdef unsigned int epoch = 0
cdef unsigned int i = 0
# q vector is only used for L1 regularization
cdef np.ndarray[DOUBLE, ndim=1, mode="c"] q = None
cdef DOUBLE *q_data_ptr = NULL
if penalty_type == L1 or penalty_type == ELASTICNET:
q = np.zeros((n_features,), dtype=np.float64, order="c")
q_data_ptr = <DOUBLE *> q.data
cdef double u = 0.0
if penalty_type == L2:
rho = 1.0
elif penalty_type == L1:
rho = 0.0
eta = eta0
t_start = time()
for epoch in range(n_iter):
if verbose > 0:
print("-- Epoch %d" % (epoch + 1))
if shuffle:
dataset.shuffle(seed)
for i in range(n_samples):
dataset.next(&x_data_ptr, &x_ind_ptr, &xnnz, &y,
&sample_weight)
if learning_rate == OPTIMAL:
eta = 1.0 / (alpha * t)
elif learning_rate == INVSCALING:
eta = eta0 / pow(t, power_t)
p = w.dot(x_data_ptr, x_ind_ptr, xnnz) + intercept
if verbose > 0:
sumloss += loss.loss(p, y)
if y > 0.0:
class_weight = weight_pos
else:
class_weight = weight_neg
update = eta * loss.dloss(p, y) * class_weight * sample_weight
if update != 0.0:
w.add(x_data_ptr, x_ind_ptr, xnnz, -update)
if fit_intercept == 1:
intercept -= update * intercept_decay
if penalty_type >= L2:
w.scale(1.0 - (rho * eta * alpha))
if penalty_type == L1 or penalty_type == ELASTICNET:
u += ((1.0 - rho) * eta * alpha)
l1penalty(w, q_data_ptr, x_ind_ptr, xnnz, u)
t += 1
count += 1
# report epoch information
if verbose > 0:
print("Norm: %.2f, NNZs: %d, "\
"Bias: %.6f, T: %d, Avg. loss: %.6f" % (w.norm(),
weights.nonzero()[0].shape[0],
intercept, count,
sumloss / count))
print("Total training time: %.2f seconds." % (time() - t_start))
# floating-point under-/overflow check.
if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \
or np.isnan(intercept) or np.isinf(intercept):
raise ValueError("floating-point under-/overflow occured.")
w.reset_wscale()
return weights, intercept
cdef inline double max(double a, double b):
return a if a >= b else b
cdef inline double min(double a, double b):
return a if a <= b else b
cdef void l1penalty(WeightVector w, DOUBLE *q_data_ptr,
INTEGER *x_ind_ptr, int xnnz, double u):
"""Apply the L1 penalty to each updated feature
This implements the truncated gradient approach by
[Tsuruoka, Y., Tsujii, J., and Ananiadou, S., 2009].
"""
cdef double z = 0.0
cdef int j = 0
cdef int idx = 0
cdef double wscale = w.wscale
cdef double* w_data_ptr = w.w_data_ptr
for j in range(xnnz):
idx = x_ind_ptr[j]
z = w_data_ptr[idx]
if (wscale * w_data_ptr[idx]) > 0.0:
w_data_ptr[idx] = max(
0.0, w_data_ptr[idx] - ((u + q_data_ptr[idx]) / wscale))
elif (wscale * w_data_ptr[idx]) < 0.0:
w_data_ptr[idx] = min(
0.0, w_data_ptr[idx] + ((u - q_data_ptr[idx]) / wscale))
q_data_ptr[idx] += (wscale * (w_data_ptr[idx] - z))
|