File: __init__.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (18 lines) | stat: -rw-r--r-- 800 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
"""
The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for
cluster analysis results. There are two forms of evaluation:

- supervised, which uses a ground truth class values for each sample.
- unsupervised, which does not and measures the 'quality' of the model itself.
"""
from .supervised import adjusted_mutual_info_score
from .supervised import adjusted_rand_score
from .supervised import completeness_score
from .supervised import contingency_matrix
from .supervised import expected_mutual_information
from .supervised import homogeneity_completeness_v_measure
from .supervised import homogeneity_score
from .supervised import mutual_info_score
from .supervised import v_measure_score
from .unsupervised import silhouette_samples
from .unsupervised import silhouette_score