1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
"""Utilities to evaluate the clustering performance of models
Functions named as *_score return a scalar value to maximize: the higher the
better.
"""
# Authors: Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD Style.
from math import log
from scipy.misc import comb
from scipy.special import gammaln
import numpy as np
# the exact version if faster for k == 2: use it by default globally in
# this module instead of the float approximate variant
def comb2(n):
return comb(n, 2, exact=1)
def check_clusterings(labels_true, labels_pred):
"""Check that the two clusterings matching 1D integer arrays"""
labels_true = np.asarray(labels_true)
labels_pred = np.asarray(labels_pred)
# input checks
if labels_true.ndim != 1:
raise ValueError(
"labels_true must be 1D: shape is %r" % (labels_true.shape,))
if labels_pred.ndim != 1:
raise ValueError(
"labels_pred must be 1D: shape is %r" % (labels_pred.shape,))
if labels_true.shape != labels_pred.shape:
raise ValueError(
"labels_true and labels_pred must have same size, got %d and %d"
% (labels_true.shape[0], labels_pred.shape[0]))
return labels_true, labels_pred
def contingency_matrix(labels_true, labels_pred, eps=None):
"""Build a contengency matrix describing the relationship between labels.
Parameters
----------
labels_true : int array, shape = [n_samples]
Ground truth class labels to be used as a reference
labels_pred : array, shape = [n_samples]
Cluster labels to evaluate
eps: None or float
If a float, that value is added to all values in the contingency
matrix. This helps to stop NaN propogation.
If None, nothing is adjusted.
Returns
-------
contingency: array, shape=[n_classes_true, n_classes_pred]
Matrix C such that C[i][j] is the number of samples in true class i and
in predicted class j. If eps is None, the dtype of this array will be
integer. If eps is given, the dtype will be float.
"""
classes = np.unique(labels_true)
clusters = np.unique(labels_pred)
# The cluster and class ids are not necessarily consecutive integers
# starting at 0 hence build a map
class_idx = dict((k, v) for v, k in enumerate(classes))
cluster_idx = dict((k, v) for v, k in enumerate(clusters))
# Build the contingency table
n_classes = classes.shape[0]
n_clusters = clusters.shape[0]
contingency = np.zeros((n_classes, n_clusters), dtype=np.int)
for c, k in zip(labels_true, labels_pred):
contingency[class_idx[c], cluster_idx[k]] += 1
if eps is not None:
# Must be a float matrix to accept float eps
contingency = np.array(contingency, dtype='float') + eps
return contingency
# clustering measures
def adjusted_rand_score(labels_true, labels_pred):
"""Rand index adjusted for chance
The Rand Index computes a similarity measure between two clusterings
by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and
true clusterings.
The raw RI score is then "adjusted for chance" into the ARI score
using the following scheme::
ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)
The adjusted Rand index is thus ensured to have a value close to
0.0 for random labeling independently of the number of clusters and
samples and exactly 1.0 when the clusterings are identical (up to
a permutation).
ARI is a symmetric measure::
adjusted_rand_score(a, b) == adjusted_rand_score(b, a)
Parameters
----------
labels_true : int array, shape = [n_samples]
Ground truth class labels to be used as a reference
labels_pred : array, shape = [n_samples]
Cluster labels to evaluate
Returns
-------
ari: float
Similarity score between -1.0 and 1.0. Random labelings have an ARI
close to 0.0. 1.0 stands for perfect match.
Examples
--------
Perfectly maching labelings have a score of 1 even
>>> from sklearn.metrics.cluster import adjusted_rand_score
>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0
Labelings that assign all classes members to the same clusters
are complete be not always pure, hence penalized::
>>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS
0.57...
ARI is symmetric, so labelings that have pure clusters with members
coming from the same classes but unnecessary splits are penalized::
>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS
0.57...
If classes members are completely split across different clusters, the
assignment is totally incomplete, hence the ARI is very low::
>>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0
References
----------
.. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions,
Journal of Classification 1985`
http://www.springerlink.com/content/x64124718341j1j0/
.. [wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
See also
--------
adjusted_mutual_info_score: Adjusted Mutual Information
"""
labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
n_samples = labels_true.shape[0]
classes = np.unique(labels_true)
clusters = np.unique(labels_pred)
# Special limit cases: no clustering since the data is not split.
# This is a perfect match hence return 1.0.
if (classes.shape[0] == clusters.shape[0] == 1
or classes.shape[0] == clusters.shape[0] == 0):
return 1.0
contingency = contingency_matrix(labels_true, labels_pred)
# Compute the ARI using the contingency data
sum_comb_c = sum(comb2(n_c) for n_c in contingency.sum(axis=1))
sum_comb_k = sum(comb2(n_k) for n_k in contingency.sum(axis=0))
sum_comb = sum(comb2(n_ij) for n_ij in contingency.flatten())
prod_comb = (sum_comb_c * sum_comb_k) / float(comb(n_samples, 2))
mean_comb = (sum_comb_k + sum_comb_c) / 2.
return ((sum_comb - prod_comb) / (mean_comb - prod_comb))
def homogeneity_completeness_v_measure(labels_true, labels_pred):
"""Compute the homogeneity and completeness and V-measure scores at once
Those metrics are based on normalized conditional entropy measures of
the clustering labeling to evaluate given the knowledge of a Ground
Truth class labels of the same samples.
A clustering result satisfies homogeneity if all of its clusters
contain only data points which are members of a single class.
A clustering result satisfies completeness if all the data points
that are members of a given class are elements of the same cluster.
Both scores have positive values between 0.0 and 1.0, larger values
being desirable.
Those 3 metrics are independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score values in any way.
V-Measure is furthermore symmetric: swapping `labels_true` and
`label_pred` will give the same score. This does not hold for
homogeneity and completeness.
Parameters
----------
labels_true : int array, shape = [n_samples]
ground truth class labels to be used as a reference
labels_pred : array, shape = [n_samples]
cluster labels to evaluate
Returns
-------
homogeneity: float
score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling
completeness: float
score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling
v_measure: float
harmonic mean of the first two
See also
--------
homogeneity_score
completeness_score
v_measure_score
"""
labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
n_samples = labels_true.shape[0]
entropy_K_given_C = 0.
entropy_C_given_K = 0.
entropy_C = 0.
entropy_K = 0.
classes = np.unique(labels_true)
clusters = np.unique(labels_pred)
n_C = [float(np.sum(labels_true == c)) for c in classes]
n_K = [float(np.sum(labels_pred == k)) for k in clusters]
for i in xrange(len(classes)):
entropy_C -= n_C[i] / n_samples * log(n_C[i] / n_samples)
for j in xrange(len(clusters)):
entropy_K -= n_K[j] / n_samples * log(n_K[j] / n_samples)
for i, c in enumerate(classes):
for j, k in enumerate(clusters):
# count samples at the intersection of class c and cluster k
n_CK = float(np.sum((labels_true == c) * (labels_pred == k)))
if n_CK != 0.0:
# turn label assignments into contribution to entropies
entropy_C_given_K -= n_CK / n_samples * log(n_CK / n_K[j])
entropy_K_given_C -= n_CK / n_samples * log(n_CK / n_C[i])
homogeneity = 1.0 - entropy_C_given_K / entropy_C if entropy_C else 1.0
completeness = 1.0 - entropy_K_given_C / entropy_K if entropy_K else 1.0
if homogeneity + completeness == 0.0:
v_measure_score = 0.0
else:
v_measure_score = (2.0 * homogeneity * completeness
/ (homogeneity + completeness))
return homogeneity, completeness, v_measure_score
def homogeneity_score(labels_true, labels_pred):
"""Homogeneity metric of a cluster labeling given a ground truth
A clustering result satisfies homogeneity if all of its clusters
contain only data points which are members of a single class.
This metric is independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score value in any way.
This metric is not symmetric: switching `label_true` with `label_pred`
will return the completeness_score which will be different in general.
Parameters
----------
labels_true : int array, shape = [n_samples]
ground truth class labels to be used as a reference
labels_pred : array, shape = [n_samples]
cluster labels to evaluate
Returns
-------
homogeneity: float
score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling
References
----------
.. [1] Andrew Rosenberg and Julia Hirschberg `V-Measure: A conditional
entropy-based external cluster evaluation measure`, 2007
http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf
See also
--------
completeness_score
v_measure_score
Examples
--------
Perfect labelings are homegenous::
>>> from sklearn.metrics.cluster import homogeneity_score
>>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0
Non-pefect labelings that futher split classes into more clusters can be
perfectly homogeneous::
>>> homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])
1.0
>>> homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])
1.0
Clusters that include samples from different classes do not make for an
homogeneous labeling::
>>> homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])
0.0
>>> homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])
0.0
"""
return homogeneity_completeness_v_measure(labels_true, labels_pred)[0]
def completeness_score(labels_true, labels_pred):
"""Completeness metric of a cluster labeling given a ground truth
A clustering result satisfies completeness if all the data points
that are members of a given class are elements of the same cluster.
This metric is independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score value in any way.
This metric is not symmetric: switching `label_true` with `label_pred`
will return the homogeneity_score which will be different in general.
Parameters
----------
labels_true : int array, shape = [n_samples]
ground truth class labels to be used as a reference
labels_pred : array, shape = [n_samples]
cluster labels to evaluate
Returns
-------
completeness: float
score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling
References
----------
.. [1] Andrew Rosenberg and Julia Hirschberg `V-Measure: A conditional
entropy-based external cluster evaluation measure`, 2007
http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf
See also
--------
homogeneity_score
v_measure_score
Examples
--------
Perfect labelings are complete::
>>> from sklearn.metrics.cluster import completeness_score
>>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0
Non-pefect labelings that assign all classes members to the same clusters
are still complete::
>>> completeness_score([0, 0, 1, 1], [0, 0, 0, 0])
1.0
>>> completeness_score([0, 1, 2, 3], [0, 0, 1, 1])
1.0
If classes members are splitted across different clusters, the
assignment cannot be complete::
>>> completeness_score([0, 0, 1, 1], [0, 1, 0, 1])
0.0
>>> completeness_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0
"""
return homogeneity_completeness_v_measure(labels_true, labels_pred)[1]
def v_measure_score(labels_true, labels_pred):
"""V-Measure cluster labeling given a ground truth
The V-Measure is the hormonic mean between homogeneity and completeness::
v = 2 * (homogeneity * completeness) / (homogeneity + completeness)
This metric is independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score value in any way.
This metric is furthermore symmetric: switching `label_true` with
`label_pred` will return the same score value. This can be useful to
measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.
Parameters
----------
labels_true : int array, shape = [n_samples]
ground truth class labels to be used as a reference
labels_pred : array, shape = [n_samples]
cluster labels to evaluate
Returns
-------
completeness: float
score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling
References
----------
.. [Rosenberg2007] `V-Measure: A conditional entropy-based external cluster
evaluation measure Andrew Rosenberg and Julia Hirschberg, 2007`
http://acl.ldc.upenn.edu/D/D07/D07-1043.pdf
See also
--------
homogeneity_score
completeness_score
Examples
--------
Perfect labelings are both homogeneous and complete, hence have score 1.0::
>>> from sklearn.metrics.cluster import v_measure_score
>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0
Labelings that assign all classes members to the same clusters
are complete be not homogeneous, hence penalized::
>>> v_measure_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS
0.8...
>>> v_measure_score([0, 1, 2, 3], [0, 0, 1, 1]) # doctest: +ELLIPSIS
0.66...
Labelings that have pure clusters with members coming from the same
classes are homogeneous but un-necessary splits harms completeness
and thus penalize V-measure as well::
>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS
0.8...
>>> v_measure_score([0, 0, 1, 1], [0, 1, 2, 3]) # doctest: +ELLIPSIS
0.66...
If classes members are completly splitted across different clusters,
the assignment is totally in-complete, hence the v-measure is null::
>>> v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0
Clusters that include samples from totally different classes totally
destroy the homogeneity of the labeling, hence::
>>> v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])
0.0
"""
return homogeneity_completeness_v_measure(labels_true, labels_pred)[2]
def mutual_info_score(labels_true, labels_pred, contingency=None):
"""Mutual Information between two clusterings
The Mutual Information is a measure of the similarity between two labels
of the same data. Where P(i) is the probability of a random sample occuring
in cluster U_i and P'(j) is the probability of a random sample occuring in
cluster V_j, the Mutual information between clusterings U and V is given
as::
MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log \frac{P(i,j)}{P(i)P'(j)}
This metric is independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score value in any way.
This metric is furthermore symmetric: switching `label_true` with
`label_pred` will return the same score value. This can be useful to
measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.
Parameters
----------
labels_true : int array, shape = [n_samples]
A clustering of the data into disjoint subsets.
labels_pred : array, shape = [n_samples]
A clustering of the data into disjoint subsets.
contingency: None or array, shape = [n_classes_true, n_classes_pred]
A contingency matrix given by the contingency_matrix function.
If value is None, it will be computed, otherwise the given value is
used, with labels_true and labels_pred ignored.
Returns
-------
mi: float
Mutual information, a non-negative value
See also
--------
adjusted_mutual_info_score: Adjusted Mutual Information
"""
if contingency is None:
labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
contingency = contingency_matrix(labels_true, labels_pred)
contingency = np.array(contingency, dtype='float')
contingency /= np.sum(contingency)
pi = np.sum(contingency, axis=1)
pi /= np.sum(pi)
pj = np.sum(contingency, axis=0)
pj /= np.sum(pj)
outer = np.outer(pi, pj)
nnz = contingency != 0.0
mi = contingency[nnz] * np.log(contingency[nnz] / outer[nnz])
return mi.sum()
def adjusted_mutual_info_score(labels_true, labels_pred):
"""Adjusted Mutual Information between two clusterings
Adjusted Mutual Information (AMI) is an adjustement of the Mutual
Information (MI) score to account for chance. It accounts for the fact that
the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared.
For two clusterings U and V, the AMI is given as::
AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]
This metric is independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score value in any way.
This metric is furthermore symmetric: switching `label_true` with
`label_pred` will return the same score value. This can be useful to
measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.
Be mindful that this function is an order of magnitude slower than other
metrics, such as the Adjusted Rand Index.
Parameters
----------
labels_true : int array, shape = [n_samples]
A clustering of the data into disjoint subsets.
labels_pred : array, shape = [n_samples]
A clustering of the data into disjoint subsets.
Returns
-------
ami: float
score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling
See also
--------
adjusted_rand_score: Adjusted Rand Index
mutual_information_score: Mutual Information (not adjusted for chance)
Examples
--------
Perfect labelings are both homogeneous and complete, hence have
score 1.0::
>>> from sklearn.metrics.cluster import adjusted_mutual_info_score
>>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0
If classes members are completly splitted across different clusters,
the assignment is totally in-complete, hence the AMI is null::
>>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0
"""
labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
n_samples = labels_true.shape[0]
classes = np.unique(labels_true)
clusters = np.unique(labels_pred)
# Special limit cases: no clustering since the data is not split.
# This is a perfect match hence return 1.0.
if (classes.shape[0] == clusters.shape[0] == 1
or classes.shape[0] == clusters.shape[0] == 0):
return 1.0
contingency = contingency_matrix(labels_true, labels_pred)
contingency = np.array(contingency, dtype='float')
# Calculate the MI for the two clusterings
mi = mutual_info_score(labels_true, labels_pred,
contingency=contingency)
# Calculate the expected value for the mutual information
emi = expected_mutual_information(contingency, n_samples)
# Calculate entropy for each labeling
h_true, h_pred = entropy(labels_true), entropy(labels_pred)
ami = (mi - emi) / (max(h_true, h_pred) - emi)
return ami
def expected_mutual_information(contingency, n_samples):
"""Calculate the expected mutual information for two labelings."""
R, C = contingency.shape
N = float(n_samples)
a = np.sum(contingency, axis=1, dtype='int')
b = np.sum(contingency, axis=0, dtype='int')
# There are three major terms to the EMI equation, which are multiplied to
# and then summed over varying nij values.
# While nijs[0] will never be used, having it simplifies the indexing.
nijs = np.arange(0, max(np.max(a), np.max(b)) + 1, dtype='float')
nijs[0] = 1 # Stops divide by zero warnings. As its not used, no issue.
# term1 is nij / N
term1 = nijs / N
# term2 is log((N*nij) / (a * b)) == log(N * nij) - log(a * b)
# term2 uses the outer product
log_ab_outer = np.log(np.outer(a, b))
# term2 uses N * nij
log_Nnij = np.log(N * nijs)
# term3 is large, and involved many factorials. Calculate these in log
# space to stop overflows.
gln_a = gammaln(a + 1)
gln_b = gammaln(b + 1)
gln_Na = gammaln(N - a + 1)
gln_Nb = gammaln(N - b + 1)
gln_N = gammaln(N + 1)
gln_nij = gammaln(nijs + 1)
# start and end values for nij terms for each summation.
start = np.array([[v - N + w for w in b] for v in a], dtype='int')
start = np.maximum(start, 1)
end = np.minimum(np.resize(a, (C, R)).T, np.resize(b, (R, C))) + 1
# emi itself is a summation over the various values.
emi = 0
for i in range(R):
for j in range(C):
for nij in range(start[i][j], end[i][j]):
term2 = log_Nnij[nij] - log_ab_outer[i][j]
# Numerators are positive, denominators are negative.
gln = (gln_a[i] + gln_b[j] + gln_Na[i] + gln_Nb[j]
- gln_N - gln_nij[nij] - gammaln(a[i] - nij + 1)
- gammaln(b[j] - nij + 1)
- gammaln(N - a[i] - b[j] + nij + 1))
term3 = np.exp(gln)
# Add the product of all terms.
emi += (term1[nij] * term2 * term3)
return emi
def entropy(labels):
"""Calculates the entropy for a labeling."""
pi = np.array([np.sum(labels == i) for i in np.unique(labels)],
dtype='float')
pi = pi[pi > 0]
pi /= np.sum(pi)
return -np.sum(pi * np.log(pi))
|