File: test_supervised.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (160 lines) | stat: -rw-r--r-- 5,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np

from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.metrics.cluster import homogeneity_score
from sklearn.metrics.cluster import completeness_score
from sklearn.metrics.cluster import v_measure_score
from sklearn.metrics.cluster import homogeneity_completeness_v_measure
from sklearn.metrics.cluster import adjusted_mutual_info_score
from sklearn.metrics.cluster import mutual_info_score
from sklearn.metrics.cluster import expected_mutual_information
from sklearn.metrics.cluster import contingency_matrix

from nose.tools import assert_almost_equal
from nose.tools import assert_equal
from numpy.testing import assert_array_almost_equal


score_funcs = [
    adjusted_rand_score,
    homogeneity_score,
    completeness_score,
    v_measure_score,
    adjusted_mutual_info_score,
]


def assert_raise_message(exception, message, callable, *args, **kwargs):
    """Helper function to test error messages in exceptions"""
    try:
        callable(*args, **kwargs)
        raise AssertionError("Should have raised %r" % exception(message))
    except exception as e:
        assert str(e) == message


def test_error_messages_on_wrong_input():
    for score_func in score_funcs:
        expected = ('labels_true and labels_pred must have same size,'
                    ' got 2 and 3')
        assert_raise_message(ValueError, expected, score_func,
                             [0, 1], [1, 1, 1])

        expected = "labels_true must be 1D: shape is (2, 2)"
        assert_raise_message(ValueError, expected, score_func,
                             [[0, 1], [1, 0]], [1, 1, 1])

        expected = "labels_pred must be 1D: shape is (2, 2)"
        assert_raise_message(ValueError, expected, score_func,
                             [0, 1, 0], [[1, 1], [0, 0]])


def test_perfect_matches():
    for score_func in score_funcs:
        assert_equal(score_func([], []), 1.0)
        assert_equal(score_func([0], [1]), 1.0)
        assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0)
        assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0)


def test_homogeneous_but_not_complete_labeling():
    # homogeneous but not complete clustering
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 1, 1, 1],
        [0, 0, 0, 1, 2, 2])
    assert_almost_equal(h, 1.00, 2)
    assert_almost_equal(c, 0.69, 2)
    assert_almost_equal(v, 0.81, 2)


def test_complete_but_not_homogeneous_labeling():
    # complete but not homogeneous clustering
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 1, 1, 2, 2],
        [0, 0, 1, 1, 1, 1])
    assert_almost_equal(h, 0.58, 2)
    assert_almost_equal(c, 1.00, 2)
    assert_almost_equal(v, 0.73, 2)


def test_not_complete_and_not_homogeneous_labeling():
    # neither complete nor homogeneous but not so bad either
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 1, 1, 1],
        [0, 1, 0, 1, 2, 2])
    assert_almost_equal(h, 0.67, 2)
    assert_almost_equal(c, 0.42, 2)
    assert_almost_equal(v, 0.52, 2)


def test_non_consicutive_labels():
    # regression tests for labels with gaps
    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 2, 2, 2],
        [0, 1, 0, 1, 2, 2])
    assert_almost_equal(h, 0.67, 2)
    assert_almost_equal(c, 0.42, 2)
    assert_almost_equal(v, 0.52, 2)

    h, c, v = homogeneity_completeness_v_measure(
        [0, 0, 0, 1, 1, 1],
        [0, 4, 0, 4, 2, 2])
    assert_almost_equal(h, 0.67, 2)
    assert_almost_equal(c, 0.42, 2)
    assert_almost_equal(v, 0.52, 2)

    ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2])
    ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2])
    assert_almost_equal(ari_1, 0.24, 2)
    assert_almost_equal(ari_2, 0.24, 2)


def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10,
                             seed=42):
    """Compute score for random uniform cluster labelings"""
    random_labels = np.random.RandomState(seed).random_integers
    scores = np.zeros((len(k_range), n_runs))
    for i, k in enumerate(k_range):
        for j in range(n_runs):
            labels_a = random_labels(low=0, high=k - 1, size=n_samples)
            labels_b = random_labels(low=0, high=k - 1, size=n_samples)
            scores[i, j] = score_func(labels_a, labels_b)
    return scores


def test_adjustment_for_chance():
    """Check that adjusted scores are almost zero on random labels"""
    n_clusters_range = [2, 10, 50, 90]
    n_samples = 100
    n_runs = 10

    scores = uniform_labelings_scores(
        adjusted_rand_score, n_samples, n_clusters_range, n_runs)

    max_abs_scores = np.abs(scores).max(axis=1)
    assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2)


def test_adjusted_mutual_info_score():
    """Compute the Adjusted Mutual Information and test against known values"""
    labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])
    labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2])
    # Mutual information
    mi = mutual_info_score(labels_a, labels_b)
    assert_almost_equal(mi, 0.41022, 5)
    # Expected mutual information
    C = contingency_matrix(labels_a, labels_b)
    n_samples = np.sum(C)
    emi = expected_mutual_information(C, n_samples)
    assert_almost_equal(emi, 0.15042, 5)
    # Adjusted mutual information
    ami = adjusted_mutual_info_score(labels_a, labels_b)
    assert_almost_equal(ami, 0.27502, 5)
    ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3])
    assert_equal(ami, 1.0)
    # Test with a very large array
    a110 = np.array([list(labels_a) * 110]).flatten()
    b110 = np.array([list(labels_b) * 110]).flatten()
    ami = adjusted_mutual_info_score(a110, b110)
    # This is not accurate to more than 2 places
    assert_almost_equal(ami, 0.37, 2)