File: metrics.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (961 lines) | stat: -rw-r--r-- 30,710 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
"""Utilities to evaluate the predictive performance of models

Functions named as *_score return a scalar value to maximize: the higher the
better

Function named as *_loss return a scalar value to minimize: the lower the
better
"""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD Style.

import numpy as np

from ..utils import check_arrays
from ..utils import deprecated


def unique_labels(*lists_of_labels):
    """Extract an ordered array of unique labels"""
    labels = set()
    for l in lists_of_labels:
        if hasattr(l, 'ravel'):
            l = l.ravel()
        labels |= set(l)
    return np.unique(sorted(labels))


def confusion_matrix(y_true, y_pred, labels=None):
    """Compute confusion matrix to evaluate the accuracy of a classification

    By definition a confusion matrix cm is such that cm[i, j] is equal
    to the number of observations known to be in group i but predicted
    to be in group j

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        true targets

    y_pred : array, shape = [n_samples]
        estimated targets

    Returns
    -------
    CM : array, shape = [n_classes, n_classes]
        confusion matrix

    References
    ----------
    http://en.wikipedia.org/wiki/Confusion_matrix
    """
    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels, dtype=np.int)

    n_labels = labels.size

    CM = np.empty((n_labels, n_labels), dtype=np.long)
    for i, label_i in enumerate(labels):
        for j, label_j in enumerate(labels):
            CM[i, j] = np.sum(
                np.logical_and(y_true == label_i, y_pred == label_j))

    return CM


def roc_curve(y_true, y_score):
    """compute Receiver operating characteristic (ROC)

    Note: this implementation is restricted to the binary classification task.

    Parameters
    ----------

    y_true : array, shape = [n_samples]
        true binary labels

    y_score : array, shape = [n_samples]
        target scores, can either be probability estimates of
        the positive class, confidence values, or binary decisions.

    Returns
    -------
    fpr : array, shape = [>2]
        False Positive Rates

    tpr : array, shape = [>2]
        True Positive Rates

    thresholds : array, shape = [>2]
        Thresholds on y_score used to compute fpr and tpr

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([1, 1, 2, 2])
    >>> scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores)
    >>> fpr
    array([ 0. ,  0.5,  0.5,  1. ])

    References
    ----------
    http://en.wikipedia.org/wiki/Receiver_operating_characteristic

    """
    y_true = np.ravel(y_true)
    classes = np.unique(y_true)

    # ROC only for binary classification
    if classes.shape[0] != 2:
        raise ValueError("ROC is defined for binary classification only")

    y_score = np.ravel(y_score)

    n_pos = float(np.sum(y_true == classes[1]))  # nb of true positive
    n_neg = float(np.sum(y_true == classes[0]))  # nb of true negative

    thresholds = np.unique(y_score)
    neg_value, pos_value = classes[0], classes[1]

    tpr = np.empty(thresholds.size, dtype=np.float)  # True positive rate
    fpr = np.empty(thresholds.size, dtype=np.float)  # False positive rate

    # Build tpr/fpr vector
    current_pos_count = current_neg_count = sum_pos = sum_neg = idx = 0

    signal = np.c_[y_score, y_true]
    sorted_signal = signal[signal[:, 0].argsort(), :][::-1]
    last_score = sorted_signal[0][0]
    for score, value in sorted_signal:
        if score == last_score:
            if value == pos_value:
                current_pos_count += 1
            else:
                current_neg_count += 1
        else:
            tpr[idx] = (sum_pos + current_pos_count) / n_pos
            fpr[idx] = (sum_neg + current_neg_count) / n_neg
            sum_pos += current_pos_count
            sum_neg += current_neg_count
            current_pos_count = 1 if value == pos_value else 0
            current_neg_count = 1 if value == neg_value else 0
            idx += 1
            last_score = score
    else:
        tpr[-1] = (sum_pos + current_pos_count) / n_pos
        fpr[-1] = (sum_neg + current_neg_count) / n_neg

    # hard decisions, add (0,0)
    if fpr.shape[0] == 2:
        fpr = np.array([0.0, fpr[0], fpr[1]])
        tpr = np.array([0.0, tpr[0], tpr[1]])
    # trivial decisions, add (0,0) and (1,1)
    elif fpr.shape[0] == 1:
        fpr = np.array([0.0, fpr[0], 1.0])
        tpr = np.array([0.0, tpr[0], 1.0])

    return fpr, tpr, thresholds


def auc(x, y):
    """Compute Area Under the Curve (AUC) using the trapezoidal rule

    Parameters
    ----------
    x : array, shape = [n]
        x coordinates

    y : array, shape = [n]
        y coordinates

    Returns
    -------
    auc : float

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([1, 1, 2, 2])
    >>> pred = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
    >>> metrics.auc(fpr, tpr)
    0.75

    """
    x, y = check_arrays(x, y)
    if x.shape[0] != y.shape[0]:
        raise ValueError('x and y should have the same shape'
                         ' to compute area under curve,'
                         ' but x.shape = %s and y.shape = %s.'
                         % (x.shape, y.shape))
    if x.shape[0] < 2:
        raise ValueError('At least 2 points are needed to compute'
                         ' area under curve, but x.shape = %s' % x.shape)

    # reorder the data points according to the x axis and using y to break ties
    x, y = np.array(sorted(points for points in zip(x, y))).T

    h = np.diff(x)
    area = np.sum(h * (y[1:] + y[:-1])) / 2.0
    return area


def precision_score(y_true, y_pred, labels=None, pos_label=1,
                    average='weighted'):
    """Compute the precision

    The precision is the ratio :math:`tp / (tp + fp)` where tp is the
    number of true positives and fp the number of false positives. The
    precision is intuitively the ability of the classifier not to
    label as positive a sample that is negative.

    The best value is 1 and the worst value is 0.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets

    y_pred : array, shape = [n_samples]
        Predicted targets

    labels : array
        Integer array of labels

    pos_label : int
        In the binary classification case, give the label of the positive
        class (default is 1). Everything else but 'pos_label'
        is considered to belong to the negative class.
        Set to None in the case of multiclass classification.

    average : string, [None, 'micro', 'macro', 'weighted'(default)]
        In the multiclass classification case, this determines the
        type of averaging performed on the data.

        macro:
            Average over classes (does not take imbalance into account).
        micro:
            Average over instances (takes imbalance into account).
            This implies that ``precision == recall == f1``
        weighted:
            Average weighted by support (takes imbalance into account).
            Can result in f1 score that is not between precision and recall.

    Returns
    -------
    precision : float
        Precision of the positive class in binary classification or
        weighted average of the precision of each class for the
        multiclass task

    """
    p, _, _, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average)
    return p


def recall_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'):
    """Compute the recall

    The recall is the ratio :math:`tp / (tp + fn)` where tp is the number of
    true positives and fn the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The best value is 1 and the worst value is 0.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets

    y_pred : array, shape = [n_samples]
        Predicted targets

    labels : array
        Integer array of labels

    pos_label : int
        In the binary classification case, give the label of the positive
        class (default is 1). Everything else but 'pos_label'
        is considered to belong to the negative class.
        Set to None in the case of multiclass classification.

    average : string, [None, 'micro', 'macro', 'weighted'(default)]
        In the multiclass classification case, this determines the
        type of averaging performed on the data.

        macro:
            Average over classes (does not take imbalance into account).
        micro:
            Average over instances (takes imbalance into account).
            This implies that ``precision == recall == f1``
        weighted:
            Average weighted by support (takes imbalance into account).
            Can result in f1 score that is not between precision and recall.

    Returns
    -------
    recall : float
        Recall of the positive class in binary classification or weighted
        average of the recall of each class for the multiclass task.

    """
    _, r, _, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average)
    return r


def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1,
                average='weighted'):
    """Compute fbeta score

    The F_beta score is the weighted harmonic mean of precision and recall,
    reaching its optimal value at 1 and its worst value at 0.

    The beta parameter determines the weight of precision in the combined
    score. ``beta < 1`` lends more weight to precision, while ``beta > 1``
    favors precision (``beta == 0`` considers only precision, ``beta == inf``
    only recall).

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets

    y_pred : array, shape = [n_samples]
        Predicted targets

    beta: float
        Weight of precision in harmonic mean.

    labels : array
        Integer array of labels

    pos_label : int
        In the binary classification case, give the label of the positive
        class (default is 1). Everything else but 'pos_label'
        is considered to belong to the negative class.
        Set to None in the case of multiclass classification.

    average : string, [None, 'micro', 'macro', 'weighted'(default)]
        In the multiclass classification case, this determines the
        type of averaging performed on the data.

        macro:
            Average over classes (does not take imbalance into account).
        micro:
            Average over instances (takes imbalance into account).
            This implies that ``precision == recall == f1``
        weighted:
            Average weighted by support (takes imbalance into account).
            Can result in f1 score that is not between precision and recall.

    Returns
    -------
    fbeta_score : float
        fbeta_score of the positive class in binary classification or weighted
        average of the fbeta_score of each class for the multiclass task.

    References
    ----------
    R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval.
    Addison Wesley, pp. 327-328.

    http://en.wikipedia.org/wiki/F1_score

    """
    _, _, f, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 beta=beta,
                                                 labels=labels,
                                                 pos_label=pos_label,
                                                 average=average)
    return f


def f1_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'):
    """Compute f1 score

    The F1 score can be interpreted as a weighted average of the precision
    and recall, where an F1 score reaches its best value at 1 and worst
    score at 0. The relative contribution of precision and recall to the f1
    score are equal. The formular for the F_1 score is::

        F_1 = 2 * (precision * recall) / (precision + recall)

    See: http://en.wikipedia.org/wiki/F1_score

    In the multi-class case, this is the weighted average of the f1-score of
    each class.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets

    y_pred : array, shape = [n_samples]
        Predicted targets

    labels : array
        Integer array of labels

    pos_label : int
        In the binary classification case, give the label of the positive
        class (default is 1). Everything else but 'pos_label'
        is considered to belong to the negative class.
        Set to None in the case of multiclass classification.

    average : string, [None, 'micro', 'macro', 'weighted'(default)]
        In the multiclass classification case, this determines the
        type of averaging performed on the data.

        macro:
            Average over classes (does not take imbalance into account).
        micro:
            Average over instances (takes imbalance into account).
            This implies that ``precision == recall == f1``
        weighted:
            Average weighted by support (takes imbalance into account).
            Can result in f1 score that is not between precision and recall.

    Returns
    -------
    f1_score : float
        f1_score of the positive class in binary classification or weighted
        average of the f1_scores of each class for the multiclass task

    References
    ----------
    http://en.wikipedia.org/wiki/F1_score

    """
    return fbeta_score(y_true, y_pred, 1, labels=labels,
                       pos_label=pos_label, average=average)


def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None,
                                    pos_label=1, average=None):
    """Compute precisions, recalls, f-measures and support for each class

    The precision is the ratio :math:`tp / (tp + fp)` where tp is the number of
    true positives and fp the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio :math:`tp / (tp + fn)` where tp is the number of
    true positives and fn the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The F_beta score can be interpreted as a weighted harmonic mean of
    the precision and recall, where an F_beta score reaches its best
    value at 1 and worst score at 0.

    The F_beta score weights recall beta as much as precision. beta = 1.0 means
    recall and precsion are equally important.

    The support is the number of occurrences of each class in y_true.

    If pos_label is None, this function returns the average precision, recall
    and f-measure if `average` is one of 'micro', 'macro', 'weighted'.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets

    y_pred : array, shape = [n_samples]
        Predicted targets

    beta : float, 1.0 by default
        The strength of recall versus precision in the f-score.

    labels : array
        Integer array of labels

    pos_label : int
        In the binary classification case, give the label of the positive
        class (default is 1). Everything else but 'pos_label'
        is considered to belong to the negative class.
        Set to None in the case of multiclass classification.

    average : string, [None, 'micro', 'macro', 'weighted'(default)]
        In the multiclass classification case, this determines the
        type of averaging performed on the data.

        macro:
            Average over classes (does not take imbalance into account).
        micro:
            Average over instances (takes imbalance into account).
            This implies that ``precision == recall == f1``
        weighted:
            Average weighted by support (takes imbalance into account).
            Can result in f1 score that is not between precision and recall.

    Returns
    -------
    precision: array, shape = [n_unique_labels], dtype = np.double
    recall: array, shape = [n_unique_labels], dtype = np.double
    f1_score: array, shape = [n_unique_labels], dtype = np.double
    support: array, shape = [n_unique_labels], dtype = np.long

    References
    ----------
    http://en.wikipedia.org/wiki/Precision_and_recall

    """
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")

    y_true, y_pred = check_arrays(y_true, y_pred)
    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels, dtype=np.int)

    n_labels = labels.size
    true_pos = np.zeros(n_labels, dtype=np.double)
    false_pos = np.zeros(n_labels, dtype=np.double)
    false_neg = np.zeros(n_labels, dtype=np.double)
    support = np.zeros(n_labels, dtype=np.long)

    for i, label_i in enumerate(labels):
        true_pos[i] = np.sum(y_pred[y_true == label_i] == label_i)
        false_pos[i] = np.sum(y_pred[y_true != label_i] == label_i)
        false_neg[i] = np.sum(y_pred[y_true == label_i] != label_i)
        support[i] = np.sum(y_true == label_i)

    try:
        # oddly, we may get an "invalid" rather than a "divide" error here
        old_err_settings = np.seterr(divide='ignore', invalid='ignore')

        # precision and recall
        precision = true_pos / (true_pos + false_pos)
        recall = true_pos / (true_pos + false_neg)

        # handle division by 0.0 in precision and recall
        precision[(true_pos + false_pos) == 0.0] = 0.0
        recall[(true_pos + false_neg) == 0.0] = 0.0

        # fbeta score
        beta2 = beta ** 2
        fscore = (1 + beta2) * (precision * recall) / (
            beta2 * precision + recall)

        # handle division by 0.0 in fscore
        fscore[(precision + recall) == 0.0] = 0.0
    finally:
        np.seterr(**old_err_settings)

    if not average:
        return precision, recall, fscore, support

    elif n_labels == 2:
        if pos_label not in labels:
            raise ValueError("pos_label=%d is not a valid label: %r" %
                             (pos_label, labels))
        pos_label_idx = list(labels).index(pos_label)
        return (precision[pos_label_idx], recall[pos_label_idx],
                fscore[pos_label_idx], support[pos_label_idx])
    else:
        average_options = (None, 'micro', 'macro', 'weighted')
        if average == 'micro':
            avg_precision = true_pos.sum() / (true_pos.sum() +
                                              false_pos.sum())
            avg_recall = true_pos.sum() / (true_pos.sum() + false_neg.sum())
            avg_fscore = (1 + beta2) * (avg_precision * avg_recall) / \
                         (beta2 * avg_precision + avg_recall)
        elif average == 'macro':
            avg_precision = np.mean(precision)
            avg_recall = np.mean(recall)
            avg_fscore = np.mean(fscore)
        elif average == 'weighted':
            avg_precision = np.average(precision, weights=support)
            avg_recall = np.average(recall, weights=support)
            avg_fscore = np.average(fscore, weights=support)
        else:
            raise ValueError('average has to be one of ' +
                             str(average_options))

        return avg_precision, avg_recall, avg_fscore, None


def matthews_corrcoef(y_true, y_pred):
    """Returns matthew's correlation coefficient for binary classes

    The Matthews correlation coefficient is used in machine learning as a
    measure of the quality of binary (two-class) classifications. It takes
    into account true and false positives and negatives and is generally
    regarded as a balanced measure which can be used even if the classes are
    of very different sizes. The MCC is in essence a correlation coefficient
    value between -1 and +1. A coefficient of +1 represents a perfect
    prediction, 0 an average random prediction and -1 an inverse prediction.
    The statistic is also known as the phi coefficient. [source: Wikipedia]

    Only in the binary case does this relate to information about true and
    false positives and negatives. See references below.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        true targets

    y_pred : array, shape = [n_samples]
        estimated targets

    Returns
    -------
    mcc : float
        matthew's correlation coefficient (+1 represents a perfect prediction,
        0 an average random prediction and -1 and inverse prediction).

    References
    ----------
    http://en.wikipedia.org/wiki/Matthews_correlation_coefficient
    http://dx.doi.org/10.1093/bioinformatics/16.5.412

    """
    mcc = np.corrcoef(y_true, y_pred)[0, 1]
    if np.isnan(mcc):
        return 0.
    else:
        return mcc


def classification_report(y_true, y_pred, labels=None, target_names=None):
    """Build a text report showing the main classification metrics

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets

    y_pred : array, shape = [n_samples]
        Estimated targets

    labels : array, shape = [n_labels]
        Optional list of label indices to include in the report

    target_names : list of strings
        Optional display names matching the labels (same order)

    Returns
    -------
    report : string
        Text summary of the precision, recall, f1-score for each class

    """

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels, dtype=np.int)

    last_line_heading = 'avg / total'

    if target_names is None:
        width = len(last_line_heading)
        target_names = ['%d' % l for l in labels]
    else:
        width = max(len(cn) for cn in target_names)
        width = max(width, len(last_line_heading))

    headers = ["precision", "recall", "f1-score", "support"]
    fmt = '%% %ds' % width  # first column: class name
    fmt += '  '
    fmt += ' '.join(['% 9s' for _ in headers])
    fmt += '\n'

    headers = [""] + headers
    report = fmt % tuple(headers)
    report += '\n'

    p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
                                                  labels=labels,
                                                  average=None)

    for i, label in enumerate(labels):
        values = [target_names[i]]
        for v in (p[i], r[i], f1[i]):
            values += ["%0.2f" % float(v)]
        values += ["%d" % int(s[i])]
        report += fmt % tuple(values)

    report += '\n'

    # compute averages
    values = [last_line_heading]
    for v in (np.average(p, weights=s),
              np.average(r, weights=s),
              np.average(f1, weights=s)):
        values += ["%0.2f" % float(v)]
    values += ['%d' % np.sum(s)]
    report += fmt % tuple(values)
    return report


def precision_recall_curve(y_true, probas_pred):
    """Compute precision-recall pairs for different probability thresholds

    Note: this implementation is restricted to the binary classification task.

    The precision is the ratio :math:`tp / (tp + fp)` where tp is the number of
    true positives and fp the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio :math:`tp / (tp + fn)` where tp is the number of
    true positives and fn the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The last precision and recall values are 1. and 0. respectively and do not
    have a corresponding threshold.  This ensures that the graph starts on the
    x axis.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True targets of binary classification in range {-1, 1} or {0, 1}

    probas_pred : array, shape = [n_samples]
        Estimated probabilities

    Returns
    -------
    precision : array, shape = [n + 1]
        Precision values

    recall : array, shape = [n + 1]
        Recall values

    thresholds : array, shape = [n]
        Thresholds on y_score used to compute precision and recall

    """
    y_true = y_true.ravel()
    labels = np.unique(y_true)
    if np.all(labels == np.array([-1, 1])):
        # convert {-1, 1} to boolean {0, 1} repr
        y_true = y_true.copy()
        y_true[y_true == -1] = 0
    elif not np.all(labels == np.array([0, 1])):
        raise ValueError("y_true contains non binary labels: %r" % labels)

    probas_pred = probas_pred.ravel()
    thresholds = np.sort(np.unique(probas_pred))
    n_thresholds = thresholds.size + 1
    precision = np.empty(n_thresholds)
    recall = np.empty(n_thresholds)
    for i, t in enumerate(thresholds):
        y_pred = (probas_pred >= t).astype(np.int)
        p, r, _, _ = precision_recall_fscore_support(y_true, y_pred)
        precision[i] = p[1]
        recall[i] = r[1]
    precision[-1] = 1.0
    recall[-1] = 0.0
    return precision, recall, thresholds


def explained_variance_score(y_true, y_pred):
    """Explained variance regression score function

    Best possible score is 1.0, lower values are worse.

    Note: the explained variance is not a symmetric function.

    return the explained variance

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    """
    y_true, y_pred = check_arrays(y_true, y_pred)
    numerator = np.var(y_true - y_pred)
    denominator = np.var(y_true)
    if denominator == 0.0:
        if numerator == 0.0:
            return 1.0
        else:
            # arbitary set to zero to avoid -inf scores, having a constant
            # y_true is not interesting for scoring a regression anyway
            return 0.0
    return 1 - numerator / denominator


def r2_score(y_true, y_pred):
    """R^2 (coefficient of determination) regression score function

    Best possible score is 1.0, lower values are worse.

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    Returns
    -------
    z : float
        The R^2 score

    Notes
    -----
    This is not a symmetric function.

    References
    ----------
    http://en.wikipedia.org/wiki/Coefficient_of_determination
    """
    y_true, y_pred = check_arrays(y_true, y_pred)
    numerator = ((y_true - y_pred) ** 2).sum()
    denominator = ((y_true - y_true.mean()) ** 2).sum()
    if denominator == 0.0:
        if numerator == 0.0:
            return 1.0
        else:
            # arbitary set to zero to avoid -inf scores, having a constant
            # y_true is not interesting for scoring a regression anyway
            return 0.0
    return 1 - numerator / denominator


def zero_one_score(y_true, y_pred):
    """Zero-one classification score (accuracy)

    Positive integer (number of good classifications).
    The best performance is 1.

    Return the fraction of correct predictions in y_pred.

    Parameters
    ----------
    y_true : array-like, shape = n_samples
        Gold standard labels.

    y_pred : array-like, shape = n_samples
        Predicted labels, as returned by a classifier.

    Returns
    -------
    score : float

    """
    y_true, y_pred = check_arrays(y_true, y_pred)
    return np.mean(y_pred == y_true)


###############################################################################
# Loss functions

def zero_one(y_true, y_pred):
    """Zero-One classification loss

    Positive integer (number of misclassifications). The best performance
    is 0.

    Return the number of errors

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    Returns
    -------
    loss : float

    """
    y_true, y_pred = check_arrays(y_true, y_pred)
    return np.sum(y_pred != y_true)


def mean_squared_error(y_true, y_pred):
    """Mean squared error regression loss

    Return a a positive floating point value (the best value is 0.0).

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    Returns
    -------
    loss : float
    """
    y_true, y_pred = check_arrays(y_true, y_pred)
    return np.mean((y_pred - y_true) ** 2)


@deprecated("""Incorrectly returns the cumulated error: use mean_squared_error
            instead; to be removed in v0.12""")
def mean_square_error(y_true, y_pred):
    """Cumulated square error regression loss

    Positive floating point value: the best value is 0.0.

    return the mean square error

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    Returns
    -------
    loss : float

    """
    y_true, y_pred = check_arrays(y_true, y_pred)
    return np.linalg.norm(y_pred - y_true) ** 2


def hinge_loss(y_true, pred_decision, pos_label=1, neg_label=-1):
    """
    Cumulated hinge loss (non-regularized).

    Assuming labels in y_true are encoded with +1 and -1,
    when a prediction mistake is made, margin = y_true * pred_decision
    is always negative (since the signs disagree), therefore 1 - margin
    is always greater than 1. The cumulated hinge loss therefore
    upperbounds the number of mistakes made by the classifier.

    Parameters
    ----------
    y_true : array, shape = [n_samples]
        True target (integers)

    pred_decision : array, shape = [n_samples] or [n_samples, n_classes]
        Predicted decisions, as output by decision_function (floats)

    """
    # TODO: multi-class hinge-loss

    if pos_label != 1 or neg_label != -1:
        # the rest of the code assumes that positive and negative labels
        # are encoded as +1 and -1 respectively
        y_true = y_true.copy()
        y_true[y_true == pos_label] = 1
        y_true[y_true == neg_label] = -1

    margin = y_true * pred_decision
    losses = 1 - margin
    # The hinge doesn't penalize good enough predictions.
    losses[losses <= 0] = 0
    return np.mean(losses)