1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
# -*- coding: utf-8 -*-
"""
The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These
are supervised learning methods based on applying Bayes' theorem with strong
(naive) feature independence assumptions.
"""
# Author: Vincent Michel <vincent.michel@inria.fr>
# Minor fixes by Fabian Pedregosa
# Amit Aides <amitibo@tx.technion.ac.il>
# Yehuda Finkelstein <yehudaf@tx.technion.ac.il>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# (parts based on earlier work by Mathieu Blondel)
#
# License: BSD Style.
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy.sparse import issparse
from .base import BaseEstimator, ClassifierMixin
from .preprocessing import binarize, LabelBinarizer
from .utils import array2d, atleast2d_or_csr
from .utils.extmath import safe_sparse_dot, logsumexp
from .utils import deprecated
class BaseNB(BaseEstimator, ClassifierMixin):
"""Abstract base class for naive Bayes estimators"""
__metaclass__ = ABCMeta
@abstractmethod
def _joint_log_likelihood(self, X):
"""Compute the unnormalized posterior log probability of X
I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of
shape [n_classes, n_samples].
Input is passed to _joint_log_likelihood as-is by predict,
predict_proba and predict_log_proba.
"""
def predict(self, X):
"""
Perform classification on an array of test vectors X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
Predicted target values for X
"""
jll = self._joint_log_likelihood(X)
return self.classes_[np.argmax(jll, axis=1)]
def predict_log_proba(self, X):
"""
Return log-probability estimates for the test vector X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array-like, shape = [n_samples, n_classes]
Returns the log-probability of the sample for each class
in the model, where classes are ordered arithmetically.
"""
jll = self._joint_log_likelihood(X)
# normalize by P(x) = P(f_1, ..., f_n)
log_prob_x = logsumexp(jll, axis=1)
return jll - np.atleast_2d(log_prob_x).T
def predict_proba(self, X):
"""
Return probability estimates for the test vector X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in
the model, where classes are ordered arithmetically.
"""
return np.exp(self.predict_log_proba(X))
class GaussianNB(BaseNB):
"""
Gaussian Naive Bayes (GaussianNB)
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array, shape = [n_samples]
Target vector relative to X
Attributes
----------
`class_prior_` : array, shape = [n_classes]
probability of each class.
`theta_` : array, shape = [n_classes, n_features]
mean of each feature per class
`sigma_` : array, shape = [n_classes, n_features]
variance of each feature per class
Examples
--------
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB()
>>> print clf.predict([[-0.8, -1]])
[1]
"""
def fit(self, X, y):
"""Fit Gaussian Naive Bayes according to X, y
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : object
Returns self.
"""
X = np.asarray(X)
y = np.asarray(y)
n_samples, n_features = X.shape
if n_samples != y.shape[0]:
raise ValueError("X and y have incompatible shapes")
self.classes_ = unique_y = np.unique(y)
n_classes = unique_y.shape[0]
self.theta_ = np.zeros((n_classes, n_features))
self.sigma_ = np.zeros((n_classes, n_features))
self.class_prior_ = np.zeros(n_classes)
epsilon = 1e-9
for i, y_i in enumerate(unique_y):
self.theta_[i, :] = np.mean(X[y == y_i, :], axis=0)
self.sigma_[i, :] = np.var(X[y == y_i, :], axis=0) + epsilon
self.class_prior_[i] = np.float(np.sum(y == y_i)) / n_samples
return self
def _joint_log_likelihood(self, X):
X = array2d(X)
joint_log_likelihood = []
for i in xrange(np.size(self.classes_)):
jointi = np.log(self.class_prior_[i])
n_ij = - 0.5 * np.sum(np.log(np.pi * self.sigma_[i, :]))
n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / \
(self.sigma_[i, :]), 1)
joint_log_likelihood.append(jointi + n_ij)
joint_log_likelihood = np.array(joint_log_likelihood).T
return joint_log_likelihood
@property
@deprecated('GaussianNB.class_prior is deprecated'
' and will be removed in version 0.12.'
' Please use ``GaussianNB.class_prior_`` instead.')
def class_prior(self):
return self.class_prior_
@property
@deprecated('GaussianNB.theta is deprecated'
' and will be removed in version 0.12.'
' Please use ``GaussianNB.theta_`` instead.')
def theta(self):
return self.theta_
@property
@deprecated('GaussianNB.sigma is deprecated'
' and will be removed in version 0.12.'
' Please use ``GaussianNB.sigma_`` instead.')
def sigma(self):
return self.sigma_
class BaseDiscreteNB(BaseNB):
"""Abstract base class for naive Bayes on discrete/categorical data
Any estimator based on this class should provide:
__init__
_joint_log_likelihood(X) as per BaseNB
"""
def fit(self, X, y, sample_weight=None, class_prior=None):
"""Fit Naive Bayes classifier according to X, y
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
sample_weight : array-like, shape = [n_samples], optional
Weights applied to individual samples (1. for unweighted).
class_prior : array, shape [n_classes]
Custom prior probability per class.
Overrides the fit_prior parameter.
Returns
-------
self : object
Returns self.
"""
X = atleast2d_or_csr(X)
labelbin = LabelBinarizer()
Y = labelbin.fit_transform(y)
self.classes_ = labelbin.classes_
n_classes = len(self.classes_)
if Y.shape[1] == 1:
Y = np.concatenate((1 - Y, Y), axis=1)
if X.shape[0] != Y.shape[0]:
msg = "X and y have incompatible shapes."
if issparse(X):
msg += "\nNote: Sparse matrices cannot be indexed w/ boolean \
masks (use `indices=True` in CV)."
raise ValueError(msg)
if sample_weight is not None:
Y *= array2d(sample_weight).T
if class_prior:
if len(class_prior) != n_classes:
raise ValueError(
"Number of priors must match number of classes")
self.class_log_prior_ = np.log(class_prior)
elif self.fit_prior:
# empirical prior, with sample_weight taken into account
y_freq = Y.sum(axis=0)
self.class_log_prior_ = np.log(y_freq) - np.log(y_freq.sum())
else:
self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes)
N_c, N_c_i = self._count(X, Y)
self.feature_log_prob_ = (np.log(N_c_i + self.alpha)
- np.log(N_c.reshape(-1, 1)
+ self.alpha * X.shape[1]))
return self
@staticmethod
def _count(X, Y):
"""Count feature occurrences.
Returns (N_c, N_c_i), where
N_c is the count of all features in all samples of class c;
N_c_i is the count of feature i in all samples of class c.
"""
N_c_i = safe_sparse_dot(Y.T, X)
N_c = np.sum(N_c_i, axis=1)
return N_c, N_c_i
# XXX The following is a stopgap measure; we need to set the dimensions
# of class_log_prior_ and feature_log_prob_ correctly.
def _get_coef(self):
return self.feature_log_prob_[1] if len(self.classes_) == 2 \
else self.feature_log_prob_
def _get_intercept(self):
return self.class_log_prior_[1] if len(self.classes_) == 2 \
else self.class_log_prior_
coef_ = property(_get_coef)
intercept_ = property(_get_intercept)
class MultinomialNB(BaseDiscreteNB):
"""
Naive Bayes classifier for multinomial models
The multinomial Naive Bayes classifier is suitable for classification with
discrete features (e.g., word counts for text classification). The
multinomial distribution normally requires integer feature counts. However,
in practice, fractional counts such as tf-idf may also work.
Parameters
----------
alpha: float, optional (default=1.0)
Additive (Laplace/Lidstone) smoothing parameter
(0 for no smoothing).
fit_prior: boolean
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
Attributes
----------
`intercept_`, `class_log_prior_` : array, shape = [n_classes]
Smoothed empirical log probability for each class.
`feature_log_prob_`, `coef_` : array, shape = [n_classes, n_features]
Empirical log probability of features
given a class, P(x_i|y).
(`intercept_` and `coef_` are properties
referring to `class_log_prior_` and
`feature_log_prob_`, respectively.)
Examples
--------
>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, Y)
MultinomialNB(alpha=1.0, fit_prior=True)
>>> print clf.predict(X[2])
[3]
Notes
-----
For the rationale behind the names `coef_` and `intercept_`, i.e.
naive Bayes as a linear classifier, see J. Rennie et al. (2003),
Tackling the poor assumptions of naive Bayes text classifiers, ICML.
"""
def __init__(self, alpha=1.0, fit_prior=True):
self.alpha = alpha
self.fit_prior = fit_prior
def _joint_log_likelihood(self, X):
"""Calculate the posterior log probability of the samples X"""
X = atleast2d_or_csr(X)
return (safe_sparse_dot(X, self.feature_log_prob_.T)
+ self.class_log_prior_)
class BernoulliNB(BaseDiscreteNB):
"""Naive Bayes classifier for multivariate Bernoulli models.
Like MultinomialNB, this classifier is suitable for discrete data. The
difference is that while MultinomialNB works with occurrence counts,
BernoulliNB is designed for binary/boolean features.
Parameters
----------
alpha: float, optional (default=1.0)
Additive (Laplace/Lidstone) smoothing parameter
(0 for no smoothing).
binarize: float or None, optional
Threshold for binarizing (mapping to booleans) of sample features.
If None, input is presumed to already consist of binary vectors.
fit_prior: boolean
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
Attributes
----------
`class_log_prior_` : array, shape = [n_classes]
Log probability of each class (smoothed).
`feature_log_prob_` : array, shape = [n_classes, n_features]
Empirical log probability of features given a class, P(x_i|y).
Examples
--------
>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True)
>>> print clf.predict(X[2])
[3]
References
----------
C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to
Information Retrieval. Cambridge University Press, pp. 234–265.
A. McCallum and K. Nigam (1998). A comparison of event models for naive
Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for
Text Categorization, pp. 41–48.
V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with
naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).
"""
def __init__(self, alpha=1.0, binarize=.0, fit_prior=True):
self.alpha = alpha
self.binarize = binarize
self.fit_prior = fit_prior
def _count(self, X, Y):
if self.binarize is not None:
X = binarize(X, threshold=self.binarize)
return super(BernoulliNB, self)._count(X, Y)
def _joint_log_likelihood(self, X):
"""Calculate the posterior log probability of the samples X"""
X = atleast2d_or_csr(X)
if self.binarize is not None:
X = binarize(X, threshold=self.binarize)
n_classes, n_features = self.feature_log_prob_.shape
n_samples, n_features_X = X.shape
if n_features_X != n_features:
raise ValueError("Expected input with %d features, got %d instead"
% (n_features, n_features_X))
neg_prob = np.log(1 - np.exp(self.feature_log_prob_))
# Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob
X_neg_prob = (neg_prob.sum(axis=1)
- safe_sparse_dot(X, neg_prob.T))
jll = safe_sparse_dot(X, self.feature_log_prob_.T) + X_neg_prob
return jll + self.class_log_prior_
|