File: base.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (581 lines) | stat: -rw-r--r-- 20,912 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
"""Base and mixin classes for nearest neighbors"""
# Authors: Jake Vanderplas <vanderplas@astro.washington.edu>
#          Fabian Pedregosa <fabian.pedregosa@inria.fr>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl>
#
# License: BSD, (C) INRIA, University of Amsterdam
import warnings

import numpy as np
from scipy.sparse import csr_matrix, issparse
from scipy.spatial.ckdtree import cKDTree

from .ball_tree import BallTree
from ..base import BaseEstimator
from ..metrics import pairwise_distances
from ..utils import safe_asarray, atleast2d_or_csr


class NeighborsWarning(UserWarning):
    pass

# Make sure that NeighborsWarning are displayed more than once
warnings.simplefilter("always", NeighborsWarning)


def warn_equidistant():
    msg = ("kneighbors: neighbor k+1 and neighbor k have the same "
           "distance: results will be dependent on data order.")
    warnings.warn(msg, NeighborsWarning, stacklevel=3)


def _check_weights(weights):
    """Check to make sure weights are valid"""
    if weights in (None, 'uniform', 'distance'):
        return weights
    elif callable(weights):
        return weights
    else:
        raise ValueError("weights not recognized: should be 'uniform', "
                         "'distance', or a callable function")


def _get_weights(dist, weights):
    """Get the weights from an array of distances and a parameter ``weights``

    Parameters
    ===========
    dist: ndarray
        The input distances
    weights: {'uniform', 'distance' or a callable}
        The kind of weighting used

    Returns
    ========
    weights_arr: array of the same shape as ``dist``
        if ``weights == 'uniform'``, then returns None
    """
    if weights in (None, 'uniform'):
        return None
    elif weights == 'distance':
        with np.errstate(divide='ignore'):
            dist = 1./dist
        return dist
    elif callable(weights):
        return weights(dist)
    else:
        raise ValueError("weights not recognized: should be 'uniform', "
                            "'distance', or a callable function")


class NeighborsBase(BaseEstimator):
    """Base class for nearest neighbors estimators."""
    #FIXME: include float parameter p for using different distance metrics.
    # this can be passed directly to BallTree and cKDTree.  Brute-force will
    # rely on soon-to-be-updated functionality in the pairwise module.
    def _init_params(self, n_neighbors=None, radius=None,
                     algorithm='auto', leaf_size=30,
                     warn_on_equidistant=True, p=2):
        self.n_neighbors = n_neighbors
        self.radius = radius
        self.algorithm = algorithm
        self.leaf_size = leaf_size
        self.warn_on_equidistant = warn_on_equidistant
        self.p = p

        if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']:
            raise ValueError("unrecognized algorithm: '%s'" % algorithm)
        if p < 1:
            raise ValueError("p must be greater than or equal to 1")

        self._fit_X = None
        self._tree = None
        self._fit_method = None

    def _fit(self, X):
        if isinstance(X, NeighborsBase):
            self._fit_X = X._fit_X
            self._tree = X._tree
            self._fit_method = X._fit_method
            return self

        elif isinstance(X, BallTree):
            self._fit_X = X.data
            self._tree = X
            self._fit_method = 'ball_tree'
            return self

        elif isinstance(X, cKDTree):
            self._fit_X = X.data
            self._tree = X
            self._fit_method = 'kd_tree'
            return self

        X = safe_asarray(X)

        if X.ndim != 2:
            raise ValueError("data type not understood")

        if issparse(X):
            if self.algorithm not in ('auto', 'brute'):
                warnings.warn("cannot use tree with sparse input: "
                              "using brute force")
            self._fit_X = X.tocsr()
            self._tree = None
            self._fit_method = 'brute'
            return self

        self._fit_method = self.algorithm
        self._fit_X = X

        if self._fit_method == 'auto':
            # BallTree outperforms the others in nearly any circumstance.
            if self.n_neighbors < self._fit_X.shape[0] / 2:
                self._fit_method = 'ball_tree'
            else:
                self._fit_method = 'brute'

        if self._fit_method == 'kd_tree':
            self._tree = cKDTree(X, self.leaf_size)
        elif self._fit_method == 'ball_tree':
            self._tree = BallTree(X, self.leaf_size, p=self.p)
        elif self._fit_method == 'brute':
            self._tree = None
        else:
            raise ValueError("algorithm = '%s' not recognized"
                             % self.algorithm)
        return self


class KNeighborsMixin(object):
    """Mixin for k-neighbors searches"""

    def kneighbors(self, X, n_neighbors=None, return_distance=True):
        """Finds the K-neighbors of a point.

        Returns distance

        Parameters
        ----------
        X : array-like, last dimension same as that of fit data
            The new point.

        n_neighbors : int
            Number of neighbors to get (default is the value
            passed to the constructor).

        return_distance : boolean, optional. Defaults to True.
            If False, distances will not be returned

        Returns
        -------
        dist : array
            Array representing the lengths to point, only present if
            return_distance=True

        ind : array
            Indices of the nearest points in the population matrix.

        Examples
        --------
        In the following example, we construct a NeighborsClassifier
        class from an array representing our data set and ask who's
        the closest point to [1,1,1]

        >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(n_neighbors=1)
        >>> neigh.fit(samples) # doctest: +ELLIPSIS
        NearestNeighbors(algorithm='auto', leaf_size=30, ...)
        >>> print neigh.kneighbors([1., 1., 1.]) # doctest: +ELLIPSIS
        (array([[ 0.5]]), array([[2]]...))

        As you can see, it returns [[0.5]], and [[2]], which means that the
        element is at distance 0.5 and is the third element of samples
        (indexes start at 0). You can also query for multiple points:

        >>> X = [[0., 1., 0.], [1., 0., 1.]]
        >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS
        array([[1],
               [2]]...)

        """
        if self._fit_method == None:
            raise ValueError("must fit neighbors before querying")

        X = atleast2d_or_csr(X)

        if n_neighbors is None:
            n_neighbors = self.n_neighbors

        if self._fit_method == 'brute':
            if self.p == 1:
                dist = pairwise_distances(X, self._fit_X, 'manhattan')
            elif self.p == 2:
                dist = pairwise_distances(X, self._fit_X, 'euclidean',
                                          squared=True)
            elif self.p == np.inf:
                dist = pairwise_distances(X, self._fit_X, 'chebyshev')
            else:
                dist = pairwise_distances(X, self._fit_X, 'minkowski',
                                          p=self.p)
            # XXX: should be implemented with a partial sort
            neigh_ind = dist.argsort(axis=1)
            if self.warn_on_equidistant and n_neighbors < self._fit_X.shape[0]:
                ii = np.arange(dist.shape[0])
                ind_k = neigh_ind[:, n_neighbors - 1]
                ind_k1 = neigh_ind[:, n_neighbors]
                if np.any(dist[ii, ind_k] == dist[ii, ind_k1]):
                    warn_equidistant()
            neigh_ind = neigh_ind[:, :n_neighbors]
            if return_distance:
                j = np.arange(neigh_ind.shape[0])[:, None]
                if self.p == 2:
                    return np.sqrt(dist[j, neigh_ind]), neigh_ind
                else:
                    return dist[j, neigh_ind], neigh_ind
            else:
                return neigh_ind
        elif self._fit_method == 'ball_tree':
            result = self._tree.query(X, n_neighbors,
                                      return_distance=return_distance)
            if self.warn_on_equidistant and self._tree.warning_flag:
                warn_equidistant()
            return result
        elif self._fit_method == 'kd_tree':
            dist, ind = self._tree.query(X, n_neighbors, p=self.p)
            # kd_tree returns a 1D array for n_neighbors = 1
            if n_neighbors == 1:
                dist = dist[:, None]
                ind = ind[:, None]
            if return_distance:
                return dist, ind
            else:
                return ind
        else:
            raise ValueError("internal: _fit_method not recognized")

    def kneighbors_graph(self, X, n_neighbors=None,
                         mode='connectivity'):
        """Computes the (weighted) graph of k-Neighbors for points in X

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Sample data

        n_neighbors : int
            Number of neighbors for each sample.
            (default is value passed to the constructor).

        mode : {'connectivity', 'distance'}, optional
            Type of returned matrix: 'connectivity' will return the
            connectivity matrix with ones and zeros, in 'distance' the
            edges are Euclidean distance between points.

        Returns
        -------
        A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit]
            n_samples_fit is the number of samples in the fitted data
            A[i, j] is assigned the weight of edge that connects i to j.

        Examples
        --------
        >>> X = [[0], [3], [1]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(n_neighbors=2)
        >>> neigh.fit(X) # doctest: +ELLIPSIS
        NearestNeighbors(algorithm='auto', leaf_size=30, ...)
        >>> A = neigh.kneighbors_graph(X)
        >>> A.todense()
        matrix([[ 1.,  0.,  1.],
                [ 0.,  1.,  1.],
                [ 1.,  0.,  1.]])

        See also
        --------
        NearestNeighbors.radius_neighbors_graph
        """
        X = np.asarray(X)

        if n_neighbors is None:
            n_neighbors = self.n_neighbors

        n_samples1 = X.shape[0]
        n_samples2 = self._fit_X.shape[0]
        n_nonzero = n_samples1 * n_neighbors
        A_indptr = np.arange(0, n_nonzero + 1, n_neighbors)

        # construct CSR matrix representation of the k-NN graph
        if mode == 'connectivity':
            A_data = np.ones((n_samples1, n_neighbors))
            A_ind = self.kneighbors(X, n_neighbors, return_distance=False)

        elif mode == 'distance':
            data, ind = self.kneighbors(X, n_neighbors + 1,
                                        return_distance=True)
            A_data, A_ind = data[:, 1:], ind[:, 1:]

        else:
            raise ValueError(
                'Unsupported mode, must be one of "connectivity" '
                'or "distance" but got "%s" instead' % mode)

        return csr_matrix((A_data.ravel(), A_ind.ravel(), A_indptr),
                          shape=(n_samples1, n_samples2))


class RadiusNeighborsMixin(object):
    """Mixin for radius-based neighbors searches"""

    def radius_neighbors(self, X, radius=None, return_distance=True):
        """Finds the neighbors of a point within a given radius.

        Returns distance

        Parameters
        ----------
        X : array-like, last dimension same as that of fit data
            The new point.

        radius : float
            Limiting distance of neighbors to return.
            (default is the value passed to the constructor).

        return_distance : boolean, optional. Defaults to True.
            If False, distances will not be returned

        Returns
        -------
        dist : array
            Array representing the lengths to point, only present if
            return_distance=True

        ind : array
            Indices of the nearest points in the population matrix.

        Examples
        --------
        In the following example, we construnct a NeighborsClassifier
        class from an array representing our data set and ask who's
        the closest point to [1,1,1]

        >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(radius=1.6)
        >>> neigh.fit(samples) # doctest: +ELLIPSIS
        NearestNeighbors(algorithm='auto', leaf_size=30, ...)
        >>> print neigh.radius_neighbors([1., 1., 1.]) # doctest: +ELLIPSIS
        (array([[ 1.5,  0.5]]...), array([[1, 2]]...)

        The first array returned contains the distances to all points which
        are closer than 1.6, while the second array returned contains their
        indices.  In general, multiple points can be queried at the same time.
        Because the number of neighbors of each point is not necessarily
        equal, `radius_neighbors` returns an array of objects, where each
        object is a 1D array of indices.
        """

        if self._fit_method == None:
            raise ValueError("must fit neighbors before querying")

        X = atleast2d_or_csr(X)

        if radius is None:
            radius = self.radius

        if self._fit_method == 'brute':
            if self.p == 1:
                dist = pairwise_distances(X, self._fit_X, 'manhattan')
            elif self.p == 2:
                dist = pairwise_distances(X, self._fit_X, 'euclidean',
                                          squared=True)
                radius *= radius
            elif self.p == np.inf:
                dist = pairwise_distances(X, self._fit_X, 'chebyshev')
            else:
                dist = pairwise_distances(X, self._fit_X, 'minkowski',
                                          p=self.p)

            neigh_ind = [np.where(d < radius)[0] for d in dist]

            # if there are the same number of neighbors for each point,
            # we can do a normal array.  Otherwise, we return an object
            # array with elements that are numpy arrays
            try:
                neigh_ind = np.asarray(neigh_ind, dtype=int)
                dtype_F = float
            except ValueError:
                neigh_ind = np.asarray(neigh_ind, dtype='object')
                dtype_F = object

            if return_distance:
                if self.p == 2:
                    dist = np.array([np.sqrt(d[neigh_ind[i]]) \
                                        for i, d in enumerate(dist)],
                                    dtype=dtype_F)
                else:
                    dist = np.array([d[neigh_ind[i]] \
                                         for i, d in enumerate(dist)],
                                    dtype=dtype_F)
                return dist, neigh_ind
            else:
                return neigh_ind
        elif self._fit_method == 'ball_tree':
            if return_distance:
                ind, dist = self._tree.query_radius(X, radius,
                                                    return_distance=True)
                return dist, ind
            else:
                ind = self._tree.query_radius(X, radius,
                                              return_distance=False)
                return ind
        elif self._fit_method == 'kd_tree':
            Npts = self._fit_X.shape[0]
            dist, ind = self._tree.query(X, Npts,
                                         distance_upper_bound=radius,
                                         p=self.p)

            ind = [ind_i[:ind_i.searchsorted(Npts)] for ind_i in ind]

            # if there are the same number of neighbors for each point,
            # we can do a normal array.  Otherwise, we return an object
            # array with elements that are numpy arrays
            try:
                ind = np.asarray(ind, dtype=int)
                dtype_F = float
            except ValueError:
                ind = np.asarray(ind, dtype='object')
                dtype_F = object

            if return_distance:
                dist = np.array([dist_i[:len(ind[i])]
                                 for i, dist_i in enumerate(dist)],
                                dtype=dtype_F)
                return dist, ind
            else:
                return ind
        else:
            raise ValueError("internal: _fit_method not recognized")

    def radius_neighbors_graph(self, X, radius=None, mode='connectivity'):
        """Computes the (weighted) graph of Neighbors for points in X

        Neighborhoods are restricted the points at a distance lower than
        radius.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Sample data

        radius : float
            Radius of neighborhoods.
            (default is the value passed to the constructor).

        mode : {'connectivity', 'distance'}, optional
            Type of returned matrix: 'connectivity' will return the
            connectivity matrix with ones and zeros, in 'distance' the
            edges are Euclidean distance between points.

        Returns
        -------
        A : sparse matrix in CSR format, shape = [n_samples, n_samples]
            A[i, j] is assigned the weight of edge that connects i to j.

        Examples
        --------
        >>> X = [[0], [3], [1]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(radius=1.5)
        >>> neigh.fit(X) # doctest: +ELLIPSIS
        NearestNeighbors(algorithm='auto', leaf_size=30, ...)
        >>> A = neigh.radius_neighbors_graph(X)
        >>> A.todense()
        matrix([[ 1.,  0.,  1.],
                [ 0.,  1.,  0.],
                [ 1.,  0.,  1.]])

        See also
        --------
        kneighbors_graph
        """
        X = np.asarray(X)

        if radius is None:
            radius = self.radius

        n_samples1 = X.shape[0]
        n_samples2 = self._fit_X.shape[0]

        # construct CSR matrix representation of the NN graph
        if mode == 'connectivity':
            A_ind = self.radius_neighbors(X, radius,
                                          return_distance=False)
            A_data = None
        elif mode == 'distance':
            dist, A_ind = self.radius_neighbors(X, radius,
                                                return_distance=True)
            A_data = np.concatenate(list(dist))
        else:
            raise ValueError(
                'Unsupported mode, must be one of "connectivity", '
                'or "distance" but got %s instead' % mode)

        n_neighbors = np.array([len(a) for a in A_ind])
        n_nonzero = np.sum(n_neighbors)
        if A_data is None:
            A_data = np.ones(n_nonzero)
        A_ind = np.concatenate(list(A_ind))
        A_indptr = np.concatenate((np.zeros(1, dtype=int),
                                   np.cumsum(n_neighbors)))

        return csr_matrix((A_data, A_ind, A_indptr),
                          shape=(n_samples1, n_samples2))


class SupervisedFloatMixin(object):
    def fit(self, X, y):
        """Fit the model using X as training data and y as target values

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, cKDTree}
            Training data. If array or matrix, then the shape
            is [n_samples, n_features]

        y : {array-like, sparse matrix}, shape = [n_samples]
            Target values, array of float values.
        """
        self._y = np.asarray(y)
        return self._fit(X)


class SupervisedIntegerMixin(object):
    def fit(self, X, y):
        """Fit the model using X as training data and y as target values

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, cKDTree}
            Training data. If array or matrix, then the shape
            is [n_samples, n_features]

        y : {array-like, sparse matrix}, shape = [n_samples]
            Target values, array of integer values.
        """
        self._y = np.asarray(y)
        return self._fit(X)


class UnsupervisedMixin(object):
    def fit(self, X, y=None):
        """Fit the model using X as training data

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, cKDTree}
            Training data. If array or matrix, shape = [n_samples, n_features]
        """
        return self._fit(X)