1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
"""Nearest Neighbor Classification"""
# Authors: Jake Vanderplas <vanderplas@astro.washington.edu>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl>
#
# License: BSD, (C) INRIA, University of Amsterdam
import numpy as np
from scipy import stats
from ..utils.extmath import weighted_mode
from .base import \
_check_weights, _get_weights, \
NeighborsBase, KNeighborsMixin,\
RadiusNeighborsMixin, SupervisedIntegerMixin
from ..base import ClassifierMixin
from ..utils import atleast2d_or_csr
class KNeighborsClassifier(NeighborsBase, KNeighborsMixin,
SupervisedIntegerMixin, ClassifierMixin):
"""Classifier implementing the k-nearest neighbors vote.
Parameters
----------
n_neighbors : int, optional (default = 5)
Number of neighbors to use by default for :meth:`k_neighbors` queries.
weights : str or callable
weight function used in prediction. Possible values:
- 'uniform' : uniform weights. All points in each neighborhood
are weighted equally.
- 'distance' : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.
Uniform weights are used by default.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`BallTree`
- 'kd_tree' will use :class:`scipy.spatial.cKDtree`
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, optional (default = 30)
Leaf size passed to BallTree or cKDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.
warn_on_equidistant : boolean, optional. Defaults to True.
Generate a warning if equidistant neighbors are discarded.
For classification or regression based on k-neighbors, if
neighbor k and neighbor k+1 have identical distances but
different labels, then the result will be dependent on the
ordering of the training data.
If the fit method is ``'kd_tree'``, no warnings will be generated.
p: integer, optional (default = 2)
Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
Examples
--------
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=2)
>>> neigh.fit(X, y) # doctest: +ELLIPSIS
KNeighborsClassifier(...)
>>> print neigh.predict([[1.5]])
[0]
See also
--------
RadiusNeighborsClassifier
KNeighborsRegressor
RadiusNeighborsRegressor
NearestNeighbors
Notes
-----
See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
"""
def __init__(self, n_neighbors=5,
weights='uniform',
algorithm='auto', leaf_size=30,
warn_on_equidistant=True, p=2):
self._init_params(n_neighbors=n_neighbors,
algorithm=algorithm,
leaf_size=leaf_size,
warn_on_equidistant=warn_on_equidistant,
p=p)
self.weights = _check_weights(weights)
def predict(self, X):
"""Predict the class labels for the provided data
Parameters
----------
X: array
A 2-D array representing the test points.
Returns
-------
labels: array
List of class labels (one for each data sample).
"""
X = atleast2d_or_csr(X)
neigh_dist, neigh_ind = self.kneighbors(X)
pred_labels = self._y[neigh_ind]
weights = _get_weights(neigh_dist, self.weights)
if weights is None:
mode, _ = stats.mode(pred_labels, axis=1)
else:
mode, _ = weighted_mode(pred_labels, weights, axis=1)
return mode.flatten().astype(np.int)
class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin,
SupervisedIntegerMixin, ClassifierMixin):
"""Classifier implementing a vote among neighbors within a given radius
Parameters
----------
radius : float, optional (default = 1.0)
Range of parameter space to use by default for :meth`radius_neighbors`
queries.
weights : str or callable
weight function used in prediction. Possible values:
- 'uniform' : uniform weights. All points in each neighborhood
are weighted equally.
- 'distance' : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.
Uniform weights are used by default.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`BallTree`
- 'kd_tree' will use :class:`scipy.spatial.cKDtree`
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, optional (default = 30)
Leaf size passed to BallTree or cKDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.
p: integer, optional (default = 2)
Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
outlier_label: int, optional (default = None)
Label, which is given for outlier samples (samples with no
neighbors on given radius).
If set to None, ValueError is raised, when outlier is detected.
Examples
--------
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y) # doctest: +ELLIPSIS
RadiusNeighborsClassifier(...)
>>> print neigh.predict([[1.5]])
[0]
See also
--------
KNeighborsClassifier
RadiusNeighborsRegressor
KNeighborsRegressor
NearestNeighbors
Notes
-----
See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
"""
def __init__(self, radius=1.0, weights='uniform',
algorithm='auto', leaf_size=30, p=2, outlier_label=None):
self._init_params(radius=radius,
algorithm=algorithm,
leaf_size=leaf_size,
p=p)
self.weights = _check_weights(weights)
self.outlier_label = outlier_label
def predict(self, X):
"""Predict the class labels for the provided data
Parameters
----------
X: array
A 2-D array representing the test points.
Returns
-------
labels: array
List of class labels (one for each data sample).
"""
X = atleast2d_or_csr(X)
neigh_dist, neigh_ind = self.radius_neighbors(X)
pred_labels = [self._y[ind] for ind in neigh_ind]
if self.outlier_label:
outlier_label = np.array((self.outlier_label, ))
small_value = np.array((1e-6, ))
for i, pl in enumerate(pred_labels):
# Check that all have at least 1 neighbor
if len(pl) < 1:
pred_labels[i] = outlier_label
neigh_dist[i] = small_value
else:
for pl in pred_labels:
# Check that all have at least 1 neighbor
if len(pl) < 1:
raise ValueError('no neighbors found for a test sample, '
'you can try using larger radius, '
'give a label for outliers, '
'or consider removing them in your '
'dataset')
weights = _get_weights(neigh_dist, self.weights)
if weights is None:
mode = np.asarray([stats.mode(pl)[0] for pl in pred_labels],
dtype=np.int)
else:
mode = np.asarray([weighted_mode(pl, w)[0]
for (pl, w) in zip(pred_labels, weights)],
dtype=np.int)
return mode.flatten().astype(np.int)
|