1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
# -*- coding: utf-8 -*-
"""
Nearest Centroid Classification
"""
# Author: Robert Layton <robertlayton@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
#
# License: BSD Style.
import numpy as np
from scipy import sparse as sp
from ..base import BaseEstimator, ClassifierMixin
from ..utils.validation import check_arrays, atleast2d_or_csr
from ..metrics.pairwise import pairwise_distances
class NearestCentroid(BaseEstimator, ClassifierMixin):
"""Nearest centroid classifier.
Each class is represented by its centroid, with test samples classified to
the class with the nearest centroid.
Parameters
----------
metric: string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string or callable, it must be one of
the options allowed by metrics.pairwise.pairwise_distances for its
metric parameter.
shrink_threshold : float, optional
Threshold for shrinking centroids to remove features.
Attributes
----------
`centroids_` : array-like, shape = [n_classes, n_features]
Centroid of each class
Examples
--------
>>> from sklearn.neighbors.nearest_centroid import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid(metric='euclidean', shrink_threshold=None)
>>> print clf.predict([[-0.8, -1]])
[1]
See also
--------
sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier
Notes
-----
When used for text classification with tf–idf vectors, this classifier is
also known as the Rocchio classifier.
References
----------
Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.
"""
def __init__(self, metric='euclidean', shrink_threshold=None):
self.metric = metric
self.shrink_threshold = shrink_threshold
def fit(self, X, y):
"""
Fit the NearestCentroid model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
Note that centroid shrinking cannot be used with sparse matrices.
y : array, shape = [n_samples]
Target values (integers)
"""
X, y = check_arrays(X, y)
if sp.issparse(X) and self.shrink_threshold:
raise ValueError("threshold shrinking not supported"
" for sparse input")
n_samples, n_features = X.shape
classes = np.unique(y)
self.classes_ = classes
n_classes = classes.size
if n_classes < 2:
raise ValueError('y has less than 2 classes')
# Mask mapping each class to it's members.
self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64)
for i, cur_class in enumerate(classes):
center_mask = y == cur_class
if sp.issparse(X):
center_mask = np.where(center_mask)[0]
self.centroids_[i] = X[center_mask].mean(axis=0)
if self.shrink_threshold:
dataset_centroid_ = np.array(X.mean(axis=0))[0]
# Number of clusters in each class.
nk = np.array([np.sum(classes == cur_class)
for cur_class in classes])
# m parameter for determining deviation
m = np.sqrt((1. / nk) + (1. / n_samples))
# Calculate deviation using the standard deviation of centroids.
variance = np.array(np.power(X - self.centroids_[y], 2))
variance = variance.sum(axis=0)
s = np.sqrt(variance / (n_samples - n_classes))
s += np.median(s) # To deter outliers from affecting the results.
mm = m.reshape(len(m), 1) # Reshape to allow broadcasting.
ms = mm * s
deviation = ((self.centroids_ - dataset_centroid_) / ms)
# Soft thresholding: if the deviation crosses 0 during shrinking,
# it becomes zero.
signs = np.sign(deviation)
deviation = (np.abs(deviation) - self.shrink_threshold)
deviation[deviation < 0] = 0
deviation = np.multiply(deviation, signs)
# Now adjust the centroids using the deviation
msd = np.multiply(ms, deviation)
self.centroids_ = np.array([dataset_centroid_ + msd[i]
for i in xrange(n_classes)])
return self
def predict(self, X):
"""Perform classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
Notes
-----
If the metric constructor parameter is "precomputed", X is assumed to
be the distance matrix between the data to be predicted and
``self.centroids_``.
"""
X = atleast2d_or_csr(X)
if not hasattr(self, "centroids_"):
raise AttributeError("Model has not been trained yet.")
return self.classes_[pairwise_distances(
X, self.centroids_, metric=self.metric).argmin(axis=1)]
|