File: regression.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (254 lines) | stat: -rw-r--r-- 9,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""Nearest Neighbor Regression"""

# Authors: Jake Vanderplas <vanderplas@astro.washington.edu>
#          Fabian Pedregosa <fabian.pedregosa@inria.fr>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl>
#
# License: BSD, (C) INRIA, University of Amsterdam

import numpy as np

from .base import \
    _get_weights, _check_weights, \
    NeighborsBase, KNeighborsMixin, \
    RadiusNeighborsMixin, SupervisedFloatMixin
from ..base import RegressorMixin
from ..utils import atleast2d_or_csr


class KNeighborsRegressor(NeighborsBase, KNeighborsMixin,
                          SupervisedFloatMixin,
                          RegressorMixin):
    """Regression based on k-nearest neighbors.

    The target is predicted by local interpolation of the targets
    associated of the nearest neighbors in the training set.

    Parameters
    ----------
    n_neighbors : int, optional (default = 5)
        Number of neighbors to use by default for :meth:`k_neighbors` queries.

    weights : str or callable
        weight function used in prediction.  Possible values:

        - 'uniform' : uniform weights.  All points in each neighborhood
          are weighted equally.
        - 'distance' : weight points by the inverse of their distance.
          in this case, closer neighbors of a query point will have a
          greater influence than neighbors which are further away.
        - [callable] : a user-defined function which accepts an
          array of distances, and returns an array of the same shape
          containing the weights.

        Uniform weights are used by default.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`scipy.spatial.cKDtree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, optional (default = 30)
        Leaf size passed to BallTree or cKDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    warn_on_equidistant : boolean, optional.  Defaults to True.
        Generate a warning if equidistant neighbors are discarded.
        For classification or regression based on k-neighbors, if
        neighbor k and neighbor k+1 have identical distances but
        different labels, then the result will be dependent on the
        ordering of the training data.
        If the fit method is ``'kd_tree'``, no warnings will be generated.

    p: integer, optional (default = 2)
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    Examples
    --------
    >>> X = [[0], [1], [2], [3]]
    >>> y = [0, 0, 1, 1]
    >>> from sklearn.neighbors import KNeighborsRegressor
    >>> neigh = KNeighborsRegressor(n_neighbors=2)
    >>> neigh.fit(X, y) # doctest: +ELLIPSIS
    KNeighborsRegressor(...)
    >>> print neigh.predict([[1.5]])
    [ 0.5]

    See also
    --------
    NearestNeighbors
    RadiusNeighborsRegressor
    KNeighborsClassifier
    RadiusNeighborsClassifier

    Notes
    -----
    See :ref:`Nearest Neighbors <neighbors>` in the online documentation
    for a discussion of the choice of ``algorithm`` and ``leaf_size``.

    http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
    """

    def __init__(self, n_neighbors=5, weights='uniform',
                 algorithm='auto', leaf_size=30, warn_on_equidistant=True,
                 p=2):
        self._init_params(n_neighbors=n_neighbors,
                          algorithm=algorithm,
                          leaf_size=leaf_size,
                          warn_on_equidistant=warn_on_equidistant,
                          p=p)
        self.weights = _check_weights(weights)

    def predict(self, X):
        """Predict the target for the provided data

        Parameters
        ----------
        X : array
            A 2-D array representing the test data.

        Returns
        -------
        y: array
            List of target values (one for each data sample).
        """
        X = atleast2d_or_csr(X)

        neigh_dist, neigh_ind = self.kneighbors(X)

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            return np.mean(self._y[neigh_ind], axis=1)
        else:
            num = np.sum(self._y[neigh_ind] * weights, axis=1)
            denom = np.sum(weights, axis=1)
            return num / denom


class RadiusNeighborsRegressor(NeighborsBase, RadiusNeighborsMixin,
                               SupervisedFloatMixin,
                               RegressorMixin):
    """Regression based on neighbors within a fixed radius.

    The target is predicted by local interpolation of the targets
    associated of the nearest neighbors in the training set.

    Parameters
    ----------
    radius : float, optional (default = 1.0)
        Range of parameter space to use by default for :meth`radius_neighbors`
        queries.

    weights : str or callable
        weight function used in prediction.  Possible values:

        - 'uniform' : uniform weights.  All points in each neighborhood
          are weighted equally.
        - 'distance' : weight points by the inverse of their distance.
          in this case, closer neighbors of a query point will have a
          greater influence than neighbors which are further away.
        - [callable] : a user-defined function which accepts an
          array of distances, and returns an array of the same shape
          containing the weights.

        Uniform weights are used by default.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`scipy.spatial.cKDtree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, optional (default = 30)
        Leaf size passed to BallTree or cKDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    p: integer, optional (default = 2)
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.


    Examples
    --------
    >>> X = [[0], [1], [2], [3]]
    >>> y = [0, 0, 1, 1]
    >>> from sklearn.neighbors import RadiusNeighborsRegressor
    >>> neigh = RadiusNeighborsRegressor(radius=1.0)
    >>> neigh.fit(X, y) # doctest: +ELLIPSIS
    RadiusNeighborsRegressor(...)
    >>> print neigh.predict([[1.5]])
    [ 0.5]

    See also
    --------
    NearestNeighbors
    KNeighborsRegressor
    KNeighborsClassifier
    RadiusNeighborsClassifier

    Notes
    -----
    See :ref:`Nearest Neighbors <neighbors>` in the online documentation
    for a discussion of the choice of ``algorithm`` and ``leaf_size``.

    http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
    """

    def __init__(self, radius=1.0, weights='uniform',
                 algorithm='auto', leaf_size=30, p=2):
        self._init_params(radius=radius,
                          algorithm=algorithm,
                          leaf_size=leaf_size,
                          p=p)
        self.weights = _check_weights(weights)

    def predict(self, X):
        """Predict the target for the provided data

        Parameters
        ----------
        X : array
            A 2-D array representing the test data.

        Returns
        -------
        y: array
            List of target values (one for each data sample).
        """
        X = atleast2d_or_csr(X)

        neigh_dist, neigh_ind = self.radius_neighbors(X)

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            return np.array([np.mean(self._y[ind])
                             for ind in neigh_ind])
        else:
            return np.array([(np.sum(self._y[ind] * weights[i])
                              / np.sum(weights[i]))
                             for (i, ind) in enumerate(neigh_ind)])