File: unsupervised.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (93 lines) | stat: -rw-r--r-- 3,500 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Unsupervised nearest neighbors learner"""

from .base import NeighborsBase
from .base import KNeighborsMixin
from .base import RadiusNeighborsMixin
from .base import UnsupervisedMixin


class NearestNeighbors(NeighborsBase, KNeighborsMixin,
                       RadiusNeighborsMixin, UnsupervisedMixin):
    """Unsupervised learner for implementing neighbor searches.

    Parameters
    ----------
    n_neighbors : int, optional (default = 5)
        Number of neighbors to use by default for :meth:`k_neighbors` queries.

    radius : float, optional (default = 1.0)
        Range of parameter space to use by default for :meth`radius_neighbors`
        queries.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`scipy.spatial.cKDtree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, optional (default = 30)
        Leaf size passed to BallTree or cKDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    warn_on_equidistant : boolean, optional.  Defaults to True.
        Generate a warning if equidistant neighbors are discarded.
        For classification or regression based on k-neighbors, if
        neighbor k and neighbor k+1 have identical distances but
        different labels, then the result will be dependent on the
        ordering of the training data.
        If the fit method is ``'kd_tree'``, no warnings will be generated.

    p: integer, optional (default = 2)
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    Examples
    --------
      >>> from sklearn.neighbors import NearestNeighbors
      >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]

      >>> neigh = NearestNeighbors(2, 0.4)
      >>> neigh.fit(samples)  #doctest: +ELLIPSIS
      NearestNeighbors(...)

      >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
      array([[2, 0]])

      >>> neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False)
      array([[2]])

    See also
    --------
    KNeighborsClassifier
    RadiusNeighborsClassifier
    KNeighborsRegressor
    RadiusNeighborsRegressor
    BallTree

    Notes
    -----
    See :ref:`Nearest Neighbors <neighbors>` in the online documentation
    for a discussion of the choice of ``algorithm`` and ``leaf_size``.

    http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
    """

    def __init__(self, n_neighbors=5, radius=1.0,
                 algorithm='auto', leaf_size=30,
                 warn_on_equidistant=True, p=2):
        self._init_params(n_neighbors=n_neighbors,
                          radius=radius,
                          algorithm=algorithm,
                          leaf_size=leaf_size,
                          warn_on_equidistant=warn_on_equidistant,
                          p=p)