1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
import numpy as np
import scipy.sparse as sp
import warnings
from . import libsvm, liblinear
from . import libsvm_sparse
from ..base import BaseEstimator
from ..utils import array2d, atleast2d_or_csr
from ..utils.extmath import safe_sparse_dot
LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr']
def _get_class_weight(class_weight, y):
"""Estimate class weights for unbalanced datasets."""
if class_weight == 'auto':
uy = np.unique(y)
weight_label = np.asarray(uy, dtype=np.int32, order='C')
weight = np.array([1.0 / np.sum(y == i) for i in uy],
dtype=np.float64, order='C')
weight *= uy.shape[0] / np.sum(weight)
else:
if class_weight is None:
keys = values = []
else:
keys = class_weight.keys()
values = class_weight.values()
weight = np.asarray(values, dtype=np.float64, order='C')
weight_label = np.asarray(keys, dtype=np.int32, order='C')
return weight, weight_label
def _one_vs_one_coef(dual_coef, n_support, support_vectors):
"""Generate primal coefficients from dual coefficients
for the one-vs-one multi class LibSVM in the case
of a linear kernel."""
# get 1vs1 weights for all n*(n-1) classifiers.
# this is somewhat messy.
# shape of dual_coef_ is nSV * (n_classes -1)
# see docs for details
n_class = dual_coef.shape[0] + 1
# XXX we could do preallocation of coef but
# would have to take care in the sparse case
coef = []
sv_locs = np.cumsum(np.hstack([[0], n_support]))
for class1 in xrange(n_class):
# SVs for class1:
sv1 = support_vectors[sv_locs[class1]:sv_locs[class1 + 1], :]
for class2 in xrange(class1 + 1, n_class):
# SVs for class1:
sv2 = support_vectors[sv_locs[class2]:sv_locs[class2 + 1], :]
# dual coef for class1 SVs:
alpha1 = dual_coef[class2 - 1, sv_locs[class1]:sv_locs[class1 + 1]]
# dual coef for class2 SVs:
alpha2 = dual_coef[class1, sv_locs[class2]:sv_locs[class2 + 1]]
# build weight for class1 vs class2
coef.append(safe_sparse_dot(alpha1, sv1)
+ safe_sparse_dot(alpha2, sv2))
return coef
class BaseLibSVM(BaseEstimator):
"""Base class for estimators that use libsvm as backing library
This implements support vector machine classification and regression.
"""
_sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"]
def __init__(self, impl, kernel, degree, gamma, coef0,
tol, C, nu, epsilon, shrinking, probability, cache_size,
sparse, class_weight, verbose):
if not impl in LIBSVM_IMPL:
raise ValueError("impl should be one of %s, %s was given" % (
LIBSVM_IMPL, impl))
self.impl = impl
self.kernel = kernel
self.degree = degree
self.gamma = gamma
self.coef0 = coef0
self.tol = tol
self.C = C
self.nu = nu
self.epsilon = epsilon
self.shrinking = shrinking
self.probability = probability
self.cache_size = cache_size
self.sparse = sparse
self.class_weight = class_weight
self.verbose = verbose
def fit(self, X, y, class_weight=None, sample_weight=None):
"""Fit the SVM model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values (integers in classification, real numbers in
regression)
sample_weight : array-like, shape = [n_samples], optional
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns self.
Notes
------
If X and y are not C-ordered and contiguous arrays of np.float64 and
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse
matrices as input.
"""
if self.sparse == "auto":
self._sparse = sp.isspmatrix(X)
else:
self._sparse = self.sparse
if class_weight != None:
warnings.warn("'class_weight' is now an initialization parameter."
"Using it in the 'fit' method is deprecated.",
DeprecationWarning)
self.class_weight = class_weight
fit = self._sparse_fit if self._sparse else self._dense_fit
if self.verbose:
print '[LibSVM]',
fit(X, y, sample_weight)
return self
def _dense_fit(self, X, y, sample_weight=None):
X = np.asarray(X, dtype=np.float64, order='C')
y = np.asarray(y, dtype=np.float64, order='C')
sample_weight = np.asarray([] if sample_weight is None
else sample_weight, dtype=np.float64)
if hasattr(self.kernel, '__call__'):
# you must store a reference to X to compute the kernel in predict
# TODO: add keyword copy to copy on demand
self.__Xfit = X
X = self._compute_kernel(X)
self.class_weight_, self.class_weight_label_ = \
_get_class_weight(self.class_weight, y)
# check dimensions
solver_type = LIBSVM_IMPL.index(self.impl)
if solver_type != 2 and X.shape[0] != y.shape[0]:
raise ValueError("X and y have incompatible shapes.\n" +
"X has %s samples, but y has %s." %
(X.shape[0], y.shape[0]))
if (hasattr(self.kernel, '__call__') or self.kernel == "precomputed") \
and X.shape[0] != X.shape[1]:
raise ValueError("X.shape[0] should be equal to X.shape[1]")
if (self.kernel in ['poly', 'rbf']) and (self.gamma == 0):
# if custom gamma is not provided ...
self.gamma = 1.0 / X.shape[1]
self.shape_fit_ = X.shape
libsvm.set_verbosity_wrap(self.verbose)
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
# we don't pass **self.get_params() to allow subclasses to
# add other parameters to __init__
self.support_, self.support_vectors_, self.n_support_, \
self.dual_coef_, self.intercept_, self.label_, self.probA_, \
self.probB_ = libsvm.fit(X, y,
svm_type=solver_type, sample_weight=sample_weight,
class_weight=self.class_weight_,
class_weight_label=self.class_weight_label_,
kernel=kernel, C=self.C, nu=self.nu,
probability=self.probability, degree=self.degree,
shrinking=self.shrinking, tol=self.tol, cache_size=self.cache_size,
coef0=self.coef0, gamma=self.gamma, epsilon=self.epsilon)
# In binary case, we need to flip the sign of coef, intercept and
# decision function. Use self._intercept_ internally.
self._intercept_ = self.intercept_.copy()
if len(self.label_) == 2 and self.impl != 'one_class':
self.intercept_ *= -1
def _sparse_fit(self, X, y, sample_weight=None):
"""
Fit the SVM model according to the given training data and parameters.
Parameters
----------
X : sparse matrix, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values (integers in classification, real numbers in
regression)
class_weight : {dict, 'auto'}, optional
Weights associated with classes in the form
{class_label : weight}. If not given, all classes are
supposed to have weight one.
The 'auto' mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies.
sample_weight : array-like, shape = [n_samples], optional
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns an instance of self.
Notes
-----
For maximum effiency, use a sparse matrix in csr format
(scipy.sparse.csr_matrix)
"""
X = sp.csr_matrix(X)
X.data = np.asarray(X.data, dtype=np.float64, order='C')
y = np.asarray(y, dtype=np.float64, order='C')
sample_weight = np.asarray([] if sample_weight is None
else sample_weight, dtype=np.float64)
if X.shape[0] != y.shape[0]:
raise ValueError("X and y have incompatible shapes: %r vs %r\n"
"Note: Sparse matrices cannot be indexed w/"
"boolean masks (use `indices=True` in CV)."
% (X.shape, y.shape))
if sample_weight.shape[0] > 0 and sample_weight.shape[0] != X.shape[0]:
raise ValueError("sample_weight and X have incompatible shapes:"
"%r vs %r\n"
"Note: Sparse matrices cannot be indexed w/"
"boolean masks (use `indices=True` in CV)."
% (sample_weight.shape, X.shape))
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
solver_type = LIBSVM_IMPL.index(self.impl)
kernel_type = self._sparse_kernels.index(kernel)
self.class_weight_, self.class_weight_label_ = \
_get_class_weight(self.class_weight, y)
if (kernel_type in [1, 2]) and (self.gamma == 0):
# if custom gamma is not provided ...
self.gamma = 1.0 / X.shape[1]
libsvm_sparse.set_verbosity_wrap(self.verbose)
self.support_vectors_, dual_coef_data, self.intercept_, self.label_, \
self.n_support_, self.probA_, self.probB_ = \
libsvm_sparse.libsvm_sparse_train(
X.shape[1], X.data, X.indices, X.indptr, y, solver_type,
kernel_type, self.degree, self.gamma, self.coef0, self.tol,
self.C, self.class_weight_label_, self.class_weight_,
sample_weight, self.nu, self.cache_size, self.epsilon,
int(self.shrinking), int(self.probability))
# In binary case, we need to flip the sign of coef, intercept and
# decision function. Use self._intercept_ internally.
self._intercept_ = self.intercept_.copy()
if len(self.label_) == 2 and self.impl != 'one_class':
self.intercept_ *= -1
n_class = len(self.label_) - 1
n_SV = self.support_vectors_.shape[0]
dual_coef_indices = np.tile(np.arange(n_SV), n_class)
dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1,
dual_coef_indices.size / n_class)
self.dual_coef_ = sp.csr_matrix(
(dual_coef_data, dual_coef_indices, dual_coef_indptr),
(n_class, n_SV))
def predict(self, X):
"""Perform classification or regression samples in X.
For a classification model, the predicted class for each
sample in X is returned. For a regression model, the function
value of X calculated is returned.
For an one-class model, +1 or -1 is returned.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
"""
X = self._validate_for_predict(X)
predict = self._sparse_predict if self._sparse else self._dense_predict
return predict(X)
def _dense_predict(self, X):
X = np.asarray(X, dtype=np.float64, order='C')
if X.ndim == 1:
# don't use np.atleast_2d, it doesn't guarantee C-contiguity
X = np.reshape(X, (1, -1), order='C')
n_samples, n_features = X.shape
X = self._compute_kernel(X)
if hasattr(self.kernel, '__call__') or self.kernel == "precomputed":
if X.shape[1] != self.shape_fit_[0]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of samples at training time" %
(X.shape[1], self.shape_fit_[0]))
elif n_features != self.shape_fit_[1]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of features at training time" %
(n_features, self.shape_fit_[1]))
C = 0.0 # C is not useful here
svm_type = LIBSVM_IMPL.index(self.impl)
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
return libsvm.predict(
X, self.support_, self.support_vectors_, self.n_support_,
self.dual_coef_, self._intercept_,
self.label_, self.probA_, self.probB_,
svm_type=svm_type,
kernel=kernel, C=C, nu=self.nu,
probability=self.probability, degree=self.degree,
shrinking=self.shrinking, tol=self.tol, cache_size=self.cache_size,
coef0=self.coef0, gamma=self.gamma, epsilon=self.epsilon)
def _sparse_predict(self, X):
X = sp.csr_matrix(X, dtype=np.float64)
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
C = 0.0 # C is not useful here
return libsvm_sparse.libsvm_sparse_predict(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self.dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self.impl), kernel_type,
self.degree, self.gamma, self.coef0, self.tol,
C, self.class_weight_label_, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self.n_support_, self.label_,
self.probA_, self.probB_)
def predict_proba(self, X):
"""Compute the likehoods each possible outcomes of samples in T.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in
the model, where classes are ordered by arithmetical
order.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will meaningless results on very small
datasets.
"""
if not self.probability:
raise ValueError(
"probability estimates must be enabled to use this method")
if self.impl not in ('c_svc', 'nu_svc'):
raise NotImplementedError("predict_proba only implemented for SVC "
"and NuSVC")
X = self._validate_for_predict(X)
pred_proba = self._sparse_predict_proba if self._sparse \
else self._dense_predict_proba
return pred_proba(X)
def _dense_predict_proba(self, X):
X = self._compute_kernel(X)
C = 0.0 # C is not useful here
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
svm_type = LIBSVM_IMPL.index(self.impl)
pprob = libsvm.predict_proba(
X, self.support_, self.support_vectors_, self.n_support_,
self.dual_coef_, self._intercept_, self.label_,
self.probA_, self.probB_,
svm_type=svm_type, kernel=kernel, C=C, nu=self.nu,
probability=self.probability, degree=self.degree,
shrinking=self.shrinking, tol=self.tol, cache_size=self.cache_size,
coef0=self.coef0, gamma=self.gamma, epsilon=self.epsilon)
return pprob
def _compute_kernel(self, X):
"""Return the data transformed by a callable kernel"""
if hasattr(self.kernel, '__call__'):
# in the case of precomputed kernel given as a function, we
# have to compute explicitly the kernel matrix
X = np.asarray(self.kernel(X, self.__Xfit),
dtype=np.float64, order='C')
return X
def _sparse_predict_proba(self, X):
X.data = np.asarray(X.data, dtype=np.float64, order='C')
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
return libsvm_sparse.libsvm_sparse_predict_proba(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self.dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self.impl), kernel_type,
self.degree, self.gamma, self.coef0, self.tol,
self.C, self.class_weight_label_, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self.n_support_, self.label_,
self.probA_, self.probB_)
def predict_log_proba(self, X):
"""Compute the log likehoods each possible outcomes of samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X : array-like, shape = [n_samples, n_classes]
Returns the log-probabilities of the sample for each class in
the model, where classes are ordered by arithmetical
order.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will meaningless results on very small
datasets.
"""
return np.log(self.predict_proba(X))
def decision_function(self, X):
"""Distance of the samples X to the separating hyperplane.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]
Returns the decision function of the sample for each class
in the model.
"""
if self._sparse:
raise ValueError("decision_function not supported for sparse SVM")
X = array2d(X, dtype=np.float64, order="C")
C = 0.0 # C is not useful here
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
dec_func = libsvm.decision_function(
X, self.support_, self.support_vectors_, self.n_support_,
self.dual_coef_, self._intercept_, self.label_,
self.probA_, self.probB_,
svm_type=LIBSVM_IMPL.index(self.impl),
kernel=kernel, C=C, nu=self.nu,
probability=self.probability, degree=self.degree,
shrinking=self.shrinking, tol=self.tol, cache_size=self.cache_size,
coef0=self.coef0, gamma=self.gamma, epsilon=self.epsilon)
# In binary case, we need to flip the sign of coef, intercept and
# decision function.
if len(self.label_) == 2 and self.impl != 'one_class':
return -dec_func
return dec_func
def _validate_for_predict(self, X):
X = atleast2d_or_csr(X, dtype=np.float64, order="C")
if self._sparse and not sp.isspmatrix(X):
X = sp.csr_matrix(X)
if sp.issparse(X) and not self._sparse:
raise ValueError(
"cannot use sparse input in %r trained on dense data"
% type(self).__name__)
return X
@property
def coef_(self):
if self.kernel != 'linear':
raise ValueError('coef_ is only available when using a '
'linear kernel')
if self.dual_coef_.shape[0] == 1:
# binary classifier
coef = -safe_sparse_dot(self.dual_coef_, self.support_vectors_)
else:
# 1vs1 classifier
coef = _one_vs_one_coef(self.dual_coef_, self.n_support_,
self.support_vectors_)
if sp.issparse(coef[0]):
coef = sp.vstack(coef).tocsr()
else:
coef = np.vstack(coef)
# coef_ being a read-only property it's better to mark the value as
# immutable to avoid hiding potential bugs for the unsuspecting user
if sp.issparse(coef):
# sparse matrix do not have global flags
coef.data.flags.writeable = False
else:
# regular dense array
coef.flags.writeable = False
return coef
class BaseLibLinear(BaseEstimator):
"""Base for classes binding liblinear (dense and sparse versions)"""
_solver_type_dict = {
'PL2_LLR_D0': 0, # L2 penalty, logistic regression
'PL2_LL2_D1': 1, # L2 penalty, L2 loss, dual form
'PL2_LL2_D0': 2, # L2 penalty, L2 loss, primal form
'PL2_LL1_D1': 3, # L2 penalty, L1 Loss, dual form
'MC_SVC': 4, # Multi-class Support Vector Classification
'PL1_LL2_D0': 5, # L1 penalty, L2 Loss, primal form
'PL1_LLR_D0': 6, # L1 penalty, logistic regression
'PL2_LLR_D1': 7, # L2 penalty, logistic regression, dual form
}
def __init__(self, penalty='l2', loss='l2', dual=True, tol=1e-4, C=1.0,
multi_class='ovr', fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0):
self.penalty = penalty
self.loss = loss
self.dual = dual
self.tol = tol
self.C = C
self.fit_intercept = fit_intercept
self.intercept_scaling = intercept_scaling
self.multi_class = multi_class
self.class_weight = class_weight
self.verbose = verbose
# Check that the arguments given are valid:
self._get_solver_type()
def _get_solver_type(self):
"""Find the liblinear magic number for the solver.
This number depends on the values of the following attributes:
- multi_class
- penalty
- loss
- dual
"""
if self.multi_class == 'crammer_singer':
solver_type = 'MC_SVC'
else:
if self.multi_class != 'ovr':
raise ValueError("`multi_class` must be one of `ovr`, "
"`crammer_singer`")
solver_type = "P%s_L%s_D%d" % (
self.penalty.upper(), self.loss.upper(), int(self.dual))
if not solver_type in self._solver_type_dict:
if self.penalty.upper() == 'L1' and self.loss.upper() == 'L1':
error_string = ("The combination of penalty='l1' "
"and loss='l1' is not supported.")
elif self.penalty.upper() == 'L2' and self.loss.upper() == 'L1':
# this has to be in primal
error_string = ("loss='l2' and penalty='l1' is "
"only supported when dual='true'.")
else:
# only PL1 in dual remains
error_string = ("penalty='l1' is only supported "
"when dual='false'.")
raise ValueError('Not supported set of arguments: '
+ error_string)
return self._solver_type_dict[solver_type]
def fit(self, X, y, class_weight=None):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target vector relative to X
class_weight : {dict, 'auto'}, optional
Weights associated with classes. If not given, all classes
are supposed to have weight one.
Returns
-------
self : object
Returns self.
"""
if class_weight != None:
warnings.warn("'class_weight' is now an initialization parameter."
"Using it in the 'fit' method is deprecated.",
DeprecationWarning)
self.class_weight = class_weight
X = atleast2d_or_csr(X, dtype=np.float64, order="C")
y = np.asarray(y, dtype=np.int32).ravel()
self._sparse = sp.isspmatrix(X)
self.class_weight_, self.class_weight_label_ = \
_get_class_weight(self.class_weight, y)
if X.shape[0] != y.shape[0]:
raise ValueError("X and y have incompatible shapes.\n" +
"X has %s samples, but y has %s." % \
(X.shape[0], y.shape[0]))
liblinear.set_verbosity_wrap(self.verbose)
if self._sparse:
train = liblinear.csr_train_wrap
else:
train = liblinear.train_wrap
if self.verbose:
print '[LibLinear]',
self.raw_coef_, self.label_ = train(X, y, self._get_solver_type(),
self.tol, self._get_bias(), self.C,
self.class_weight_label_,
self.class_weight_)
return self
def predict(self, X):
"""Predict target values of X according to the fitted model.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
"""
X = self._validate_for_predict(X)
self._check_n_features(X)
C = 0.0 # C is not useful here
predict = liblinear.csr_predict_wrap if self._sparse \
else liblinear.predict_wrap
return predict(X, self.raw_coef_, self._get_solver_type(), self.tol,
C, self.class_weight_label_, self.class_weight_,
self.label_, self._get_bias())
def decision_function(self, X):
"""Decision function value for X according to the trained model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
T : array-like, shape = [n_samples, n_class]
Returns the decision function of the sample for each class
in the model.
"""
X = self._validate_for_predict(X)
self._check_n_features(X)
C = 0.0 # C is not useful here
dfunc_wrap = liblinear.csr_decision_function_wrap \
if self._sparse \
else liblinear.decision_function_wrap
dec_func = dfunc_wrap(X, self.raw_coef_, self._get_solver_type(),
self.tol, C, self.class_weight_label_, self.class_weight_,
self.label_, self._get_bias())
return dec_func
def _check_n_features(self, X):
n_features = self.raw_coef_.shape[1]
if self.fit_intercept:
n_features -= 1
if X.shape[1] != n_features:
raise ValueError("X.shape[1] should be %d, not %d." % (n_features,
X.shape[1]))
def _validate_for_predict(self, X):
X = atleast2d_or_csr(X, dtype=np.float64, order="C")
if self._sparse and not sp.isspmatrix(X):
X = sp.csr_matrix(X)
elif sp.isspmatrix(X) and not self._sparse:
raise ValueError(
"cannot use sparse input in %r trained on dense data"
% type(self).__name__)
if not self.raw_coef_.flags['F_CONTIGUOUS']:
warnings.warn('Coefficients are the fortran-contiguous. '
'Copying them.', RuntimeWarning,
stacklevel=3)
self.raw_coef_ = np.asfortranarray(self.raw_coef_)
return X
def _get_intercept_(self):
if self.fit_intercept:
ret = self.intercept_scaling * self.raw_coef_[:, -1]
return ret
return 0.0
def _set_intercept_(self, intercept):
self.fit_intercept = True
intercept /= self.intercept_scaling
intercept = intercept.reshape(-1, 1)
self.raw_coef_ = np.hstack((self.raw_coef_[:, : -1], intercept))
# We need fortran ordered arrays for the predict
self.raw_coef_ = np.asfortranarray(self.raw_coef_)
intercept_ = property(_get_intercept_, _set_intercept_)
def _get_coef_(self):
if self.fit_intercept:
ret = self.raw_coef_[:, : -1].copy()
else:
ret = self.raw_coef_.copy()
# mark the returned value as immutable
# to avoid silencing potential bugs
ret.flags.writeable = False
return ret
def _set_coef_(self, coef):
raw_intercept = self.raw_coef_[:, -1].reshape(-1, 1)
self.raw_coef_ = coef
if self.fit_intercept:
self.raw_coef_ = np.hstack((self.raw_coef_, raw_intercept))
# We need fortran ordered arrays for the predict
self.raw_coef_ = np.asfortranarray(self.raw_coef_)
coef_ = property(_get_coef_, _set_coef_)
def _get_bias(self):
if self.fit_intercept:
return self.intercept_scaling
else:
return -1.0
libsvm.set_verbosity_wrap(0)
libsvm_sparse.set_verbosity_wrap(0)
liblinear.set_verbosity_wrap(0)
|