File: liblinear.pxd

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (50 lines) | stat: -rw-r--r-- 2,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
cimport numpy as np


cdef extern from "src/liblinear/linear.h":
    cdef struct feature_node
    cdef struct problem
    cdef struct model
    cdef struct parameter
    char *check_parameter (problem *prob, parameter *param)
    model *train (problem *prob, parameter *param)
    int get_nr_feature (model *model)
    int get_nr_class (model *model)
    void free_and_destroy_model (model **)
    void destroy_param (parameter *)

cdef extern from "src/liblinear/liblinear_helper.c":
    void copy_w(char *, model *, int)
    parameter *set_parameter (int, double, double, int,
                             char *, char *)
    problem *set_problem (char *, char *, np.npy_intp *, double)
    problem *csr_set_problem (char *values, np.npy_intp *n_indices,
        char *indices, np.npy_intp *n_indptr, char *indptr, char *Y,
        np.npy_intp n_features, double bias)
    parameter *set_parameter(int, double, double, int, char *, char *)

    model *set_model(parameter *, char *, np.npy_intp *, char *, double)
    int copy_predict(char *, model *, np.npy_intp *, char *)

    int csr_copy_predict(
        np.npy_intp n_features, np.npy_intp *data_size, char *data,
        np.npy_intp *index_size, char *index, np.npy_intp
        *intptr_size, char *intptr, model *model, char *dec_values)

    int csr_copy_predict_values(
        np.npy_intp n_features, np.npy_intp *data_size, char *data, np.npy_intp
        *index_size, char *index, np.npy_intp *indptr_shape, char
        *intptr, model *model_, char *dec_values, int nr_class)

    int csr_copy_predict_proba(
        np.npy_intp n_features, np.npy_intp *data_size, char *data,
        np.npy_intp *index_size, char *index, np.npy_intp
        *indptr_shape, char *indptr, model *model_, char *dec_values)

    int copy_prob_predict(char *, model *, np.npy_intp *, char *)
    int copy_predict_values(char *, model *, np.npy_intp *, char *, int)
    int copy_label(char *, model *, int)
    double get_bias(model *)
    void free_problem (problem *)
    void free_parameter (parameter *)
    void set_verbosity(int)