1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
from .. import LinearSVC
from ...base import ClassifierMixin, RegressorMixin
from .base import SparseBaseLibSVM
from ...utils import deprecated
class SVC(SparseBaseLibSVM, ClassifierMixin):
"""SVC for sparse matrices (csr).
See :class:`sklearn.svm.SVC` for a complete list of parameters
Notes
-----
For best results, this accepts a matrix in csr format
(scipy.sparse.csr), but should be able to convert from any array-like
object (including other sparse representations).
Examples
--------
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm.sparse import SVC
>>> clf = SVC()
>>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.5, kernel='rbf', probability=False, shrinking=True,
tol=0.001, verbose=False)
>>> print clf.predict([[-0.8, -1]])
[ 1.]
"""
def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=0.0,
coef0=0.0, shrinking=True, probability=False,
tol=1e-3, cache_size=200, class_weight=None,
verbose=False):
super(SVC, self).__init__('c_svc', kernel, degree, gamma, coef0, tol,
C, 0., 0., shrinking, probability,
cache_size, class_weight, verbose)
class NuSVC(SparseBaseLibSVM, ClassifierMixin):
"""NuSVC for sparse matrices (csr).
See :class:`sklearn.svm.NuSVC` for a complete list of parameters
Notes
-----
For best results, this accepts a matrix in csr format
(scipy.sparse.csr), but should be able to convert from any array-like
object (including other sparse representations).
Examples
--------
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm.sparse import NuSVC
>>> clf = NuSVC()
>>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE
NuSVC(cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
kernel='rbf', nu=0.5, probability=False, shrinking=True, tol=0.001,
verbose=False)
>>> print clf.predict([[-0.8, -1]])
[ 1.]
"""
def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma=0.0,
coef0=0.0, shrinking=True, probability=False,
tol=1e-3, cache_size=200, class_weight=None,
verbose=False):
super(NuSVC, self).__init__('nu_svc', kernel, degree, gamma, coef0,
tol, 0., nu, 0., shrinking, probability,
cache_size, class_weight, verbose)
class SVR(SparseBaseLibSVM, RegressorMixin):
"""SVR for sparse matrices (csr)
See :class:`sklearn.svm.SVR` for a complete list of parameters
Notes
-----
For best results, this accepts a matrix in csr format
(scipy.sparse.csr), but should be able to convert from any array-like
object (including other sparse representations).
Examples
--------
>>> from sklearn.svm.sparse import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma=0.2,
kernel='rbf', probability=False, shrinking=True, tol=0.001,
verbose=False)
"""
def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3,
C=1.0, epsilon=0.1, shrinking=True, probability=False,
cache_size=200, verbose=False):
super(SVR, self).__init__('epsilon_svr', kernel, degree, gamma, coef0,
tol, C, 0., epsilon, shrinking, probability,
cache_size, None, verbose)
class NuSVR(SparseBaseLibSVM, RegressorMixin):
"""NuSVR for sparse matrices (csr)
See :class:`sklearn.svm.NuSVC` for a complete list of parameters
Notes
-----
For best results, this accepts a matrix in csr format
(scipy.sparse.csr), but should be able to convert from any array-like
object (including other sparse representations).
Examples
--------
>>> from sklearn.svm.sparse import NuSVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = NuSVR(nu=0.1, C=1.0)
>>> clf.fit(X, y)
NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.2,
kernel='rbf', nu=0.1, probability=False, shrinking=True, tol=0.001,
verbose=False)
"""
def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma=0.0,
coef0=0.0, shrinking=True, epsilon=0.1, probability=False,
tol=1e-3, cache_size=200, verbose=False):
super(NuSVR, self).__init__('nu_svr', kernel, degree, gamma, coef0,
tol, C, nu, epsilon, shrinking, probability, cache_size,
None, verbose)
class OneClassSVM(SparseBaseLibSVM):
"""OneClassSVM for sparse matrices (csr)
See :class:`sklearn.svm.OneClassSVM` for a complete list of parameters
Notes
-----
For best results, this accepts a matrix in csr format
(scipy.sparse.csr), but should be able to convert from any array-like
object (including other sparse representations).
"""
def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3,
nu=0.5, shrinking=True, probability=False, cache_size=200,
verbose=False):
super(OneClassSVM, self).__init__('one_class', kernel, degree, gamma,
coef0, tol, 0.0, nu, 0.0, shrinking, probability, cache_size,
None, verbose)
def fit(self, X, sample_weight=None):
super(OneClassSVM, self).fit(
X, [], sample_weight=sample_weight)
@deprecated("""to be removed in v0.12;
use sklearn.svm.LinearSVC instead""")
class LinearSVC(LinearSVC):
pass
|