1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
import numpy as np
from scipy import sparse
from sklearn import datasets, svm, linear_model, base
from numpy.testing import assert_array_almost_equal, \
assert_array_equal, assert_equal
from nose.tools import assert_raises, assert_true
from sklearn.datasets.samples_generator import make_classification
from sklearn.svm.tests import test_svm
# test sample 1
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
X_sp = sparse.lil_matrix(X)
Y = [1, 1, 1, 2, 2, 2]
T = np.array([[-1, -1], [2, 2], [3, 2]])
true_result = [1, 2, 2]
# test sample 2
X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ],
[0, 0, 2], [3, 3, 3]])
X2_sp = sparse.dok_matrix(X2)
Y2 = [1, 2, 2, 2, 3]
T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]])
true_result2 = [1, 2, 3]
iris = datasets.load_iris()
# permute
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# sparsify
iris.data = sparse.csr_matrix(iris.data)
def test_svc():
"""Check that sparse SVC gives the same result as SVC"""
clf = svm.SVC(kernel='linear').fit(X, Y)
sp_clf = svm.SVC(kernel='linear').fit(X_sp, Y)
assert_array_equal(sp_clf.predict(T), true_result)
assert_true(sparse.issparse(sp_clf.support_vectors_))
assert_array_almost_equal(clf.support_vectors_,
sp_clf.support_vectors_.todense())
assert_true(sparse.issparse(sp_clf.dual_coef_))
assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense())
assert_true(sparse.issparse(sp_clf.coef_))
assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense())
assert_array_almost_equal(clf.predict(T), sp_clf.predict(T))
# refit with a different dataset
clf.fit(X2, Y2)
sp_clf.fit(X2_sp, Y2)
assert_array_almost_equal(clf.support_vectors_,
sp_clf.support_vectors_.todense())
assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense())
assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense())
assert_array_almost_equal(clf.predict(T2), sp_clf.predict(T2))
def test_svc_iris():
"""Test the sparse SVC with the iris dataset"""
for k in ('linear', 'poly', 'rbf'):
sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target)
clf = svm.SVC(kernel=k).fit(iris.data.todense(), iris.target)
assert_array_almost_equal(clf.support_vectors_,
sp_clf.support_vectors_.todense())
assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense())
assert_array_almost_equal(
clf.predict(iris.data.todense()), sp_clf.predict(iris.data))
if k == 'linear':
assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense())
def test_error():
"""
Test that it gives proper exception on deficient input
"""
# impossible value of C
assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y)
# impossible value of nu
clf = svm.NuSVC(nu=0.0)
assert_raises(ValueError, clf.fit, X_sp, Y)
Y2 = Y[:-1] # wrong dimensions for labels
assert_raises(ValueError, clf.fit, X_sp, Y2)
clf = svm.SVC()
clf.fit(X_sp, Y)
assert_array_equal(clf.predict(T), true_result)
def test_linearsvc():
"""
Similar to test_SVC
"""
clf = svm.LinearSVC().fit(X, Y)
sp_clf = svm.LinearSVC().fit(X_sp, Y)
assert_true(sp_clf.fit_intercept)
assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=4)
assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp))
clf.fit(X2, Y2)
sp_clf.fit(X2_sp, Y2)
assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=4)
def test_linearsvc_iris():
"""Test the sparse LinearSVC with the iris dataset"""
sp_clf = svm.LinearSVC().fit(iris.data, iris.target)
clf = svm.LinearSVC().fit(iris.data.todense(), iris.target)
assert_array_almost_equal(clf.label_, sp_clf.label_)
assert_equal(clf.fit_intercept, sp_clf.fit_intercept)
assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=1)
assert_array_almost_equal(
clf.predict(iris.data.todense()), sp_clf.predict(iris.data))
# check decision_function
pred = np.argmax(sp_clf.decision_function(iris.data), 1)
assert_array_almost_equal(pred, clf.predict(iris.data.todense()))
def test_weight():
"""
Test class weights
"""
X_, y_ = make_classification(n_samples=200, n_features=100,
weights=[0.833, 0.167], random_state=0)
X_ = sparse.csr_matrix(X_)
for clf in (linear_model.LogisticRegression(),
svm.LinearSVC(),
svm.SVC()):
clf.set_params(class_weight={0: 5})
clf.fit(X_[:180], y_[:180])
y_pred = clf.predict(X_[180:])
assert_true(np.sum(y_pred == y_[180:]) >= 11)
def test_sample_weights():
"""
Test weights on individual samples
"""
clf = svm.SVC()
clf.fit(X_sp, Y)
assert_array_equal(clf.predict(X[2]), [1.])
sample_weight = [.1] * 3 + [10] * 3
clf.fit(X_sp, Y, sample_weight=sample_weight)
assert_array_equal(clf.predict(X[2]), [2.])
def test_sparse_liblinear_intercept_handling():
"""
Test that sparse liblinear honours intercept_scaling param
"""
test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC)
def test_sparse_realdata():
"""
Test on a subset from the 20newsgroups dataset.
This catchs some bugs if input is not correctly converted into
sparse format or weights are not correctly initialized.
"""
data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069])
indices = np.array([6, 5, 35, 31])
indptr = np.array(
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4])
X = sparse.csr_matrix((data, indices, indptr))
y = np.array(
[1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2.,
0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2.,
0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1.,
3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2.,
0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2.,
3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1.,
1., 3.])
clf = svm.SVC(kernel='linear').fit(X.todense(), y)
sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y)
assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.todense())
assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.todense())
def test_sparse_svc_clone_with_callable_kernel():
a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True)
b = base.clone(a)
b.fit(X_sp, Y)
b.predict(X_sp)
b.predict_proba(X_sp)
# b.decision_function(X_sp) # XXX : should be supported
if __name__ == '__main__':
import nose
nose.runmodule()
|