1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
from unittest import TestCase
from sklearn.datasets.samples_generator import make_spd_matrix
from sklearn import hmm
from sklearn import mixture
from sklearn.utils.extmath import logsumexp
from sklearn.utils import check_random_state
from nose import SkipTest
rng = np.random.RandomState(0)
np.seterr(all='warn')
class TestBaseHMM(TestCase):
def setUp(self):
self.prng = np.random.RandomState(9)
class StubHMM(hmm._BaseHMM):
def _compute_log_likelihood(self, X):
return self.framelogprob
def _generate_sample_from_state(self):
pass
def _init(self):
pass
def setup_example_hmm(self):
# Example from http://en.wikipedia.org/wiki/Forward-backward_algorithm
h = self.StubHMM(2)
h.transmat_ = [[0.7, 0.3], [0.3, 0.7]]
h.startprob_ = [0.5, 0.5]
framelogprob = np.log([[0.9, 0.2],
[0.9, 0.2],
[0.1, 0.8],
[0.9, 0.2],
[0.9, 0.2]])
# Add dummy observations to stub.
h.framelogprob = framelogprob
return h, framelogprob
def test_init(self):
h, framelogprob = self.setup_example_hmm()
for params in [('transmat_',), ('startprob_', 'transmat_')]:
d = dict((x[:-1], getattr(h, x)) for x in params)
h2 = self.StubHMM(h.n_components, **d)
self.assertEqual(h.n_components, h2.n_components)
for p in params:
assert_array_almost_equal(getattr(h, p), getattr(h2, p))
def test_do_forward_pass(self):
h, framelogprob = self.setup_example_hmm()
logprob, fwdlattice = h._do_forward_pass(framelogprob)
reflogprob = -3.3725
self.assertAlmostEqual(logprob, reflogprob, places=4)
reffwdlattice = np.array([[0.4500, 0.1000],
[0.3105, 0.0410],
[0.0230, 0.0975],
[0.0408, 0.0150],
[0.0298, 0.0046]])
assert_array_almost_equal(np.exp(fwdlattice), reffwdlattice, 4)
def test_do_backward_pass(self):
h, framelogprob = self.setup_example_hmm()
bwdlattice = h._do_backward_pass(framelogprob)
refbwdlattice = np.array([[0.0661, 0.0455],
[0.0906, 0.1503],
[0.4593, 0.2437],
[0.6900, 0.4100],
[1.0000, 1.0000]])
assert_array_almost_equal(np.exp(bwdlattice), refbwdlattice, 4)
def test_do_viterbi_pass(self):
h, framelogprob = self.setup_example_hmm()
logprob, state_sequence = h._do_viterbi_pass(framelogprob)
refstate_sequence = [0, 0, 1, 0, 0]
assert_array_equal(state_sequence, refstate_sequence)
reflogprob = -4.4590
self.assertAlmostEqual(logprob, reflogprob, places=4)
def test_eval(self):
h, framelogprob = self.setup_example_hmm()
nobs = len(framelogprob)
logprob, posteriors = h.eval([])
assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs))
reflogprob = -3.3725
self.assertAlmostEqual(logprob, reflogprob, places=4)
refposteriors = np.array([[0.8673, 0.1327],
[0.8204, 0.1796],
[0.3075, 0.6925],
[0.8204, 0.1796],
[0.8673, 0.1327]])
assert_array_almost_equal(posteriors, refposteriors, decimal=4)
def test_hmm_eval_consistent_with_gmm(self):
n_components = 8
nobs = 10
h = self.StubHMM(n_components)
# Add dummy observations to stub.
framelogprob = np.log(self.prng.rand(nobs, n_components))
h.framelogprob = framelogprob
# If startprob and transmat are uniform across all states (the
# default), the transitions are uninformative - the model
# reduces to a GMM with uniform mixing weights (in terms of
# posteriors, not likelihoods).
logprob, hmmposteriors = h.eval([])
assert_array_almost_equal(hmmposteriors.sum(axis=1), np.ones(nobs))
norm = logsumexp(framelogprob, axis=1)[:, np.newaxis]
gmmposteriors = np.exp(framelogprob - np.tile(norm, (1, n_components)))
assert_array_almost_equal(hmmposteriors, gmmposteriors)
def test_hmm_decode_consistent_with_gmm(self):
n_components = 8
nobs = 10
h = self.StubHMM(n_components)
# Add dummy observations to stub.
framelogprob = np.log(self.prng.rand(nobs, n_components))
h.framelogprob = framelogprob
# If startprob and transmat are uniform across all states (the
# default), the transitions are uninformative - the model
# reduces to a GMM with uniform mixing weights (in terms of
# posteriors, not likelihoods).
viterbi_ll, state_sequence = h.decode([])
norm = logsumexp(framelogprob, axis=1)[:, np.newaxis]
gmmposteriors = np.exp(framelogprob - np.tile(norm, (1, n_components)))
gmmstate_sequence = gmmposteriors.argmax(axis=1)
assert_array_equal(state_sequence, gmmstate_sequence)
def test_base_hmm_attributes(self):
n_components = 20
startprob = self.prng.rand(n_components)
startprob = startprob / startprob.sum()
transmat = self.prng.rand(n_components, n_components)
transmat /= np.tile(transmat.sum(axis=1)
[:, np.newaxis], (1, n_components))
h = self.StubHMM(n_components)
self.assertEquals(h.n_components, n_components)
h.startprob_ = startprob
assert_array_almost_equal(h.startprob_, startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
2 * startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_', [])
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
np.zeros((n_components - 2, 2)))
h.transmat_ = transmat
assert_array_almost_equal(h.transmat_, transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
2 * transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_', [])
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
np.zeros((n_components - 2, n_components)))
def train_hmm_and_keep_track_of_log_likelihood(hmm, obs, n_iter=1, **kwargs):
hmm.fit(obs, n_iter=1, **kwargs)
loglikelihoods = []
for n in xrange(n_iter):
hmm.fit(obs, n_iter=1, init_params='', **kwargs)
loglikelihoods.append(sum(hmm.score(x) for x in obs))
return loglikelihoods
class GaussianHMMBaseTester(object):
def setUp(self):
self.prng = prng = np.random.RandomState(10)
self.n_components = n_components = 3
self.n_features = n_features = 3
self.startprob = prng.rand(n_components)
self.startprob = self.startprob / self.startprob.sum()
self.transmat = prng.rand(n_components, n_components)
self.transmat /= np.tile(self.transmat.sum(axis=1)[:, np.newaxis],
(1, n_components))
self.means = prng.randint(-20, 20, (n_components, n_features))
self.covars = {
'spherical': (1.0 + 2 * np.dot(prng.rand(n_components, 1),
np.ones((1, n_features)))) ** 2,
'tied': (make_spd_matrix(n_features, random_state=0)
+ np.eye(n_features)),
'diag': (1.0 + 2 * prng.rand(n_components, n_features)) ** 2,
'full': np.array([make_spd_matrix(n_features, random_state=0)
+ np.eye(n_features)
for x in range(n_components)]),
}
self.expanded_covars = {
'spherical': [np.eye(n_features) * cov
for cov in self.covars['spherical']],
'diag': [np.diag(cov) for cov in self.covars['diag']],
'tied': [self.covars['tied']] * n_components,
'full': self.covars['full'],
}
def test_bad_covariance_type(self):
hmm.GaussianHMM(20, self.covariance_type)
self.assertRaises(ValueError, hmm.GaussianHMM, 20,
'badcovariance_type')
def _test_attributes(self):
# XXX: This test is bugged and creates weird errors -- skipped
h = hmm.GaussianHMM(self.n_components, self.covariance_type)
self.assertEquals(h.n_components, self.n_components)
self.assertEquals(h.covariance_type, self.covariance_type)
h.startprob_ = self.startprob
assert_array_almost_equal(h.startprob_, self.startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
2 * self.startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_', [])
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
np.zeros((self.n_components - 2, self.n_features)))
h.transmat_ = self.transmat
assert_array_almost_equal(h.transmat_, self.transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
2 * self.transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_', [])
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
np.zeros((self.n_components - 2, self.n_components)))
h.means_ = self.means
self.assertEquals(h.n_features, self.n_features)
self.assertRaises(ValueError, h.__setattr__, 'means_', [])
self.assertRaises(ValueError, h.__setattr__, 'means_',
np.zeros((self.n_components - 2, self.n_features)))
h.covars_ = self.covars[self.covariance_type]
assert_array_almost_equal(h.covars_,
self.expanded_covars[self.covariance_type])
#self.assertRaises(ValueError, h.__setattr__, 'covars', [])
#self.assertRaises(ValueError, h.__setattr__, 'covars',
# np.zeros((self.n_components - 2, self.n_features)))
def test_eval_and_decode(self):
h = hmm.GaussianHMM(self.n_components, self.covariance_type)
h.means_ = self.means
h.covars_ = self.covars[self.covariance_type]
# Make sure the means are far apart so posteriors.argmax()
# picks the actual component used to generate the observations.
h.means_ = 20 * h.means_
gaussidx = np.repeat(range(self.n_components), 5)
nobs = len(gaussidx)
obs = self.prng.randn(nobs, self.n_features) + h.means_[gaussidx]
ll, posteriors = h.eval(obs)
self.assertEqual(posteriors.shape, (nobs, self.n_components))
assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs))
viterbi_ll, stateseq = h.decode(obs)
assert_array_equal(stateseq, gaussidx)
def test_sample(self, n=1000):
h = hmm.GaussianHMM(self.n_components, self.covariance_type)
# Make sure the means are far apart so posteriors.argmax()
# picks the actual component used to generate the observations.
h.means_ = 20 * self.means
h.covars_ = np.maximum(self.covars[self.covariance_type], 0.1)
h.startprob_ = self.startprob
samples = h.sample(n)[0]
self.assertEquals(samples.shape, (n, self.n_features))
def test_fit(self, params='stmc', n_iter=25, verbose=False, **kwargs):
h = hmm.GaussianHMM(self.n_components, self.covariance_type)
h.startprob_ = self.startprob
h.transmat_ = hmm.normalize(self.transmat
+ np.diag(self.prng.rand(self.n_components)), 1)
h.means_ = 20 * self.means
h.covars_ = self.covars[self.covariance_type]
# Create training data by sampling from the HMM.
train_obs = [h.sample(n=10)[0] for x in xrange(10)]
# Mess up the parameters and see if we can re-learn them.
h.fit(train_obs, n_iter=0)
trainll = train_hmm_and_keep_track_of_log_likelihood(
h, train_obs, n_iter=n_iter, params=params, **kwargs)[1:]
# Check that the loglik is always increasing during training
if not np.all(np.diff(trainll) > 0) and verbose:
print
print ('Test train: %s (%s)\n %s\n %s'
% (self.covariance_type, params, trainll, np.diff(trainll)))
delta_min = np.diff(trainll).min()
self.assertTrue(
delta_min > -0.8,
"The min nll increase is %f which is lower than the admissible"
" threshold of %f, for model %s. The likelihoods are %s."
% (delta_min, -0.8, self.covariance_type, trainll))
def test_fit_works_on_sequences_of_different_length(self):
obs = [self.prng.rand(3, self.n_features),
self.prng.rand(4, self.n_features),
self.prng.rand(5, self.n_features)]
h = hmm.GaussianHMM(self.n_components, self.covariance_type)
# This shouldn't raise
# ValueError: setting an array element with a sequence.
h.fit(obs)
def test_fit_with_priors(self, params='stmc', n_iter=10, verbose=False):
startprob_prior = 10 * self.startprob + 2.0
transmat_prior = 10 * self.transmat + 2.0
means_prior = self.means
means_weight = 2.0
covars_weight = 2.0
if self.covariance_type in ('full', 'tied'):
covars_weight += self.n_features
covars_prior = self.covars[self.covariance_type]
h = hmm.GaussianHMM(self.n_components, self.covariance_type)
h.startprob_ = self.startprob
h.startprob_prior = startprob_prior
h.transmat_ = hmm.normalize(self.transmat
+ np.diag(self.prng.rand(self.n_components)), 1)
h.transmat_prior = transmat_prior
h.means_ = 20 * self.means
h.means_prior = means_prior
h.means_weight = means_weight
h.covars_ = self.covars[self.covariance_type]
h.covars_prior = covars_prior
h.covars_weight = covars_weight
# Create training data by sampling from the HMM.
train_obs = [h.sample(n=10)[0] for x in xrange(10)]
# Mess up the parameters and see if we can re-learn them.
h.fit(train_obs[:1], n_iter=0)
trainll = train_hmm_and_keep_track_of_log_likelihood(
h, train_obs, n_iter=n_iter, params=params)[1:]
# Check that the loglik is always increasing during training
if not np.all(np.diff(trainll) > 0) and verbose:
print
print ('Test MAP train: %s (%s)\n %s\n %s'
% (self.covariance_type, params, trainll, np.diff(trainll)))
# XXX: Why such a large tolerance?
self.assertTrue(np.all(np.diff(trainll) > -0.5))
class TestGaussianHMMWithSphericalCovars(GaussianHMMBaseTester, TestCase):
covariance_type = 'spherical'
def test_fit_startprob_and_transmat(self):
self.test_fit('st')
class TestGaussianHMMWithDiagonalCovars(GaussianHMMBaseTester, TestCase):
covariance_type = 'diag'
class TestGaussianHMMWithTiedCovars(GaussianHMMBaseTester, TestCase):
covariance_type = 'tied'
class TestGaussianHMMWithFullCovars(GaussianHMMBaseTester, TestCase):
covariance_type = 'full'
class MultinomialHMMTestCase(TestCase):
"""Using examples from Wikipedia
- http://en.wikipedia.org/wiki/Hidden_Markov_model
- http://en.wikipedia.org/wiki/Viterbi_algorithm
"""
def setUp(self):
self.prng = np.random.RandomState(9)
self.n_components = 2 # ('Rainy', 'Sunny')
self.n_symbols = 3 # ('walk', 'shop', 'clean')
self.emissionprob = [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]]
self.startprob = [0.6, 0.4]
self.transmat = [[0.7, 0.3], [0.4, 0.6]]
self.h = hmm.MultinomialHMM(self.n_components,
startprob=self.startprob,
transmat=self.transmat)
self.h.emissionprob_ = self.emissionprob
def test_wikipedia_viterbi_example(self):
# From http://en.wikipedia.org/wiki/Viterbi_algorithm:
# "This reveals that the observations ['walk', 'shop', 'clean']
# were most likely generated by states ['Sunny', 'Rainy',
# 'Rainy'], with probability 0.01344."
observations = [0, 1, 2]
logprob, state_sequence = self.h.decode(observations)
self.assertAlmostEqual(np.exp(logprob), 0.01344)
assert_array_equal(state_sequence, [1, 0, 0])
def test_attributes(self):
h = hmm.MultinomialHMM(self.n_components)
self.assertEquals(h.n_components, self.n_components)
h.startprob_ = self.startprob
assert_array_almost_equal(h.startprob_, self.startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
2 * self.startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_', [])
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
np.zeros((self.n_components - 2, self.n_symbols)))
h.transmat_ = self.transmat
assert_array_almost_equal(h.transmat_, self.transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
2 * self.transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_', [])
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
np.zeros((self.n_components - 2, self.n_components)))
h.emissionprob_ = self.emissionprob
assert_array_almost_equal(h.emissionprob_, self.emissionprob)
self.assertRaises(ValueError, h.__setattr__, 'emissionprob_', [])
self.assertRaises(ValueError, h.__setattr__, 'emissionprob_',
np.zeros((self.n_components - 2, self.n_symbols)))
self.assertEquals(h.n_symbols, self.n_symbols)
def test_eval(self):
idx = np.repeat(range(self.n_components), 10)
nobs = len(idx)
obs = [int(x) for x in np.floor(self.prng.rand(nobs) * self.n_symbols)]
ll, posteriors = self.h.eval(obs)
self.assertEqual(posteriors.shape, (nobs, self.n_components))
assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs))
def test_sample(self, n=1000):
samples = self.h.sample(n)[0]
self.assertEquals(len(samples), n)
self.assertEquals(len(np.unique(samples)), self.n_symbols)
def test_fit(self, params='ste', n_iter=15, verbose=False, **kwargs):
h = self.h
# Create training data by sampling from the HMM.
train_obs = [h.sample(n=10)[0] for x in xrange(10)]
# Mess up the parameters and see if we can re-learn them.
h.startprob_ = hmm.normalize(self.prng.rand(self.n_components))
h.transmat_ = hmm.normalize(self.prng.rand(self.n_components,
self.n_components), axis=1)
h.emissionprob_ = hmm.normalize(
self.prng.rand(self.n_components, self.n_symbols), axis=1)
trainll = train_hmm_and_keep_track_of_log_likelihood(
h, train_obs, n_iter=n_iter, params=params, **kwargs)[1:]
# Check that the loglik is always increasing during training
if not np.all(np.diff(trainll) > 0) and verbose:
print
print 'Test train: (%s)\n %s\n %s' % (params, trainll,
np.diff(trainll))
self.assertTrue(np.all(np.diff(trainll) > - 1.e-3))
def test_fit_emissionprob(self):
self.test_fit('e')
def create_random_gmm(n_mix, n_features, covariance_type, prng=0):
prng = check_random_state(prng)
g = mixture.GMM(n_mix, covariance_type=covariance_type)
g.means_ = prng.randint(-20, 20, (n_mix, n_features))
mincv = 0.1
g.covars_ = {
'spherical': (mincv + mincv * np.dot(prng.rand(n_mix, 1),
np.ones((1, n_features)))) ** 2,
'tied': (make_spd_matrix(n_features, random_state=prng)
+ mincv * np.eye(n_features)),
'diag': (mincv + mincv * prng.rand(n_mix, n_features)) ** 2,
'full': np.array(
[make_spd_matrix(n_features, random_state=prng)
+ mincv * np.eye(n_features) for x in xrange(n_mix)])
}[covariance_type]
g.weights_ = hmm.normalize(prng.rand(n_mix))
return g
class GMMHMMBaseTester(object):
def setUp(self):
self.prng = np.random.RandomState(9)
self.n_components = 3
self.n_mix = 2
self.n_features = 2
self.covariance_type = 'diag'
self.startprob = self.prng.rand(self.n_components)
self.startprob = self.startprob / self.startprob.sum()
self.transmat = self.prng.rand(self.n_components, self.n_components)
self.transmat /= np.tile(self.transmat.sum(axis=1)[:, np.newaxis],
(1, self.n_components))
self.gmms = []
for state in xrange(self.n_components):
self.gmms.append(create_random_gmm(
self.n_mix, self.n_features, self.covariance_type,
prng=self.prng))
def test_attributes(self):
h = hmm.GMMHMM(self.n_components, covariance_type=self.covariance_type)
self.assertEquals(h.n_components, self.n_components)
h.startprob_ = self.startprob
assert_array_almost_equal(h.startprob_, self.startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
2 * self.startprob)
self.assertRaises(ValueError, h.__setattr__, 'startprob_', [])
self.assertRaises(ValueError, h.__setattr__, 'startprob_',
np.zeros((self.n_components - 2, self.n_features)))
h.transmat_ = self.transmat
assert_array_almost_equal(h.transmat_, self.transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
2 * self.transmat)
self.assertRaises(ValueError, h.__setattr__, 'transmat_', [])
self.assertRaises(ValueError, h.__setattr__, 'transmat_',
np.zeros((self.n_components - 2, self.n_components)))
def test_eval_and_decode(self):
h = hmm.GMMHMM(self.n_components, gmms=self.gmms)
# Make sure the means are far apart so posteriors.argmax()
# picks the actual component used to generate the observations.
for g in h.gmms:
g.means_ *= 20
refstateseq = np.repeat(range(self.n_components), 5)
nobs = len(refstateseq)
obs = [h.gmms[x].sample(1).flatten() for x in refstateseq]
ll, posteriors = h.eval(obs)
self.assertEqual(posteriors.shape, (nobs, self.n_components))
assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs))
viterbi_ll, stateseq = h.decode(obs)
assert_array_equal(stateseq, refstateseq)
def test_sample(self, n=1000):
h = hmm.GMMHMM(self.n_components, self.covariance_type,
startprob=self.startprob, transmat=self.transmat,
gmms=self.gmms)
samples = h.sample(n)[0]
self.assertEquals(samples.shape, (n, self.n_features))
def test_fit(self, params='stmwc', n_iter=5, verbose=False, **kwargs):
h = hmm.GMMHMM(self.n_components, covars_prior=1.0)
h.startprob_ = self.startprob
h.transmat_ = hmm.normalize(
self.transmat + np.diag(self.prng.rand(self.n_components)), 1)
h.gmms = self.gmms
# Create training data by sampling from the HMM.
train_obs = [h.sample(n=10,
random_state=self.prng)[0] for x in xrange(10)]
# Mess up the parameters and see if we can re-learn them.
h.fit(train_obs, n_iter=0)
h.transmat_ = hmm.normalize(self.prng.rand(self.n_components,
self.n_components), axis=1)
h.startprob_ = hmm.normalize(self.prng.rand(self.n_components))
trainll = train_hmm_and_keep_track_of_log_likelihood(
h, train_obs, n_iter=n_iter, params=params)[1:]
if not np.all(np.diff(trainll) > 0) and verbose:
print
print 'Test train: (%s)\n %s\n %s' % (params, trainll,
np.diff(trainll))
# XXX: this test appears to check that training log likelihood should
# never be decreasing (up to a tolerance of 0.5, why?) but this is not
# the case when the seed changes.
raise SkipTest("Unstable test: trainll is not always increasing "
"depending on seed")
self.assertTrue(np.all(np.diff(trainll) > -0.5))
def test_fit_works_on_sequences_of_different_length(self):
obs = [self.prng.rand(3, self.n_features),
self.prng.rand(4, self.n_features),
self.prng.rand(5, self.n_features)]
h = hmm.GMMHMM(self.n_components, covariance_type=self.covariance_type)
# This shouldn't raise
# ValueError: setting an array element with a sequence.
h.fit(obs)
class TestGMMHMMWithDiagCovars(GMMHMMBaseTester, TestCase):
covariance_type = 'diag'
def test_fit_startprob_and_transmat(self):
self.test_fit('st')
def test_fit_means(self):
self.test_fit('m')
class TestGMMHMMWithTiedCovars(GMMHMMBaseTester, TestCase):
covariance_type = 'tied'
class TestGMMHMMWithFullCovars(GMMHMMBaseTester, TestCase):
covariance_type = 'full'
def test_normalize_1D():
A = rng.rand(2) + 1.0
for axis in range(1):
Anorm = hmm.normalize(A, axis)
assert np.all(np.allclose(Anorm.sum(axis), 1.0))
def test_normalize_3D():
A = rng.rand(2, 2, 2) + 1.0
for axis in range(3):
Anorm = hmm.normalize(A, axis)
assert np.all(np.allclose(Anorm.sum(axis), 1.0))
|