1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
import numpy as np
from numpy.testing import assert_array_equal
from nose.tools import assert_equal
from nose.tools import assert_almost_equal
from nose.tools import assert_true
from nose.tools import assert_raises
from sklearn.utils.testing import assert_greater
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn.multiclass import OutputCodeClassifier
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LinearRegression, Lasso, ElasticNet, Ridge
from sklearn.tree import DecisionTreeClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import svm
from sklearn import datasets
iris = datasets.load_iris()
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
n_classes = 3
# FIXME: - should use sets
# - should move to metrics module
def multilabel_precision(Y_true, Y_pred):
n_predictions = 0
n_correct = 0
for i in range(len(Y_true)):
n_predictions += len(Y_pred[i])
for label in Y_pred[i]:
if label in Y_true[i]:
n_correct += 1
return float(n_correct) / n_predictions
def multilabel_recall(Y_true, Y_pred):
n_labels = 0
n_correct = 0
for i in range(len(Y_true)):
n_labels += len(Y_true[i])
for label in Y_pred[i]:
if label in Y_true[i]:
n_correct += 1
return float(n_correct) / n_labels
def test_ovr_exceptions():
ovr = OneVsRestClassifier(LinearSVC())
assert_raises(ValueError, ovr.predict, [])
def test_ovr_fit_predict():
# A classifier which implements decision_function.
ovr = OneVsRestClassifier(LinearSVC())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ovr.estimators_), n_classes)
pred2 = LinearSVC().fit(iris.data, iris.target).predict(iris.data)
assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2))
# A classifier which implements predict_proba.
ovr = OneVsRestClassifier(MultinomialNB())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert_true(np.mean(iris.target == pred) >= 0.65)
def test_ovr_multilabel():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]]
Y = np.array([[0, 1, 1],
[0, 1, 0],
[1, 1, 1],
[1, 0, 1],
[1, 0, 0]])
for base_clf in (MultinomialNB(), LinearSVC(),
LinearRegression(), Ridge(),
ElasticNet(), Lasso(alpha=0.5)):
# test input as lists of tuples
clf = OneVsRestClassifier(base_clf).fit(X, y)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_equal(set(y_pred), set([1, 2]))
assert_true(clf.multilabel_)
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_array_equal(y_pred, [0, 1, 1])
assert_true(clf.multilabel_)
def test_ovr_fit_predict_svc():
ovr = OneVsRestClassifier(svm.SVC())
ovr.fit(iris.data, iris.target)
assert_equal(len(ovr.estimators_), 3)
assert_greater(ovr.score(iris.data, iris.target), .9)
def test_ovr_multilabel_dataset():
base_clf = MultinomialNB(alpha=1)
for au, prec, recall in zip((True, False), (0.65, 0.74), (0.72, 0.84)):
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=2,
length=50,
allow_unlabeled=au,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
assert_true(clf.multilabel_)
assert_almost_equal(multilabel_precision(Y_test, Y_pred), prec,
places=2)
assert_almost_equal(multilabel_recall(Y_test, Y_pred), recall,
places=2)
def test_ovr_gridsearch():
ovr = OneVsRestClassifier(LinearSVC())
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovr, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert_true(best_C in Cs)
def test_ovr_coef_():
ovr = OneVsRestClassifier(LinearSVC())
ovr.fit(iris.data, iris.target)
shape = ovr.coef_.shape
assert_equal(shape[0], n_classes)
assert_equal(shape[1], iris.data.shape[1])
def test_ovr_coef_exceptions():
# Not fitted exception!
ovr = OneVsRestClassifier(LinearSVC())
# lambda is needed because we don't want coef_ to be evaluated right away
assert_raises(ValueError, lambda x: ovr.coef_, None)
# Doesn't have coef_ exception!
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(iris.data, iris.target)
assert_raises(AttributeError, lambda x: ovr.coef_, None)
def test_ovo_exceptions():
ovo = OneVsOneClassifier(LinearSVC())
assert_raises(ValueError, ovo.predict, [])
def test_ovo_fit_predict():
# A classifier which implements decision_function.
ovo = OneVsOneClassifier(LinearSVC())
ovo.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)
# A classifier which implements predict_proba.
ovo = OneVsOneClassifier(MultinomialNB())
ovo.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)
def test_ovo_gridsearch():
ovo = OneVsOneClassifier(LinearSVC())
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovo, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert_true(best_C in Cs)
def test_ecoc_exceptions():
ecoc = OutputCodeClassifier(LinearSVC())
assert_raises(ValueError, ecoc.predict, [])
def test_ecoc_fit_predict():
# A classifier which implements decision_function.
ecoc = OutputCodeClassifier(LinearSVC(), code_size=2)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ecoc.estimators_), n_classes * 2)
# A classifier which implements predict_proba.
ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ecoc.estimators_), n_classes * 2)
def test_ecoc_gridsearch():
ecoc = OutputCodeClassifier(LinearSVC())
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ecoc, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert_true(best_C in Cs)
|