File: test_multiclass.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (206 lines) | stat: -rw-r--r-- 7,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

import numpy as np

from numpy.testing import assert_array_equal
from nose.tools import assert_equal
from nose.tools import assert_almost_equal
from nose.tools import assert_true
from nose.tools import assert_raises

from sklearn.utils.testing import assert_greater
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn.multiclass import OutputCodeClassifier
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LinearRegression, Lasso, ElasticNet, Ridge
from sklearn.tree import DecisionTreeClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import svm
from sklearn import datasets

iris = datasets.load_iris()
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
n_classes = 3


# FIXME: - should use sets
#        - should move to metrics module
def multilabel_precision(Y_true, Y_pred):
    n_predictions = 0
    n_correct = 0
    for i in range(len(Y_true)):
        n_predictions += len(Y_pred[i])
        for label in Y_pred[i]:
            if label in Y_true[i]:
                n_correct += 1
    return float(n_correct) / n_predictions


def multilabel_recall(Y_true, Y_pred):
    n_labels = 0
    n_correct = 0
    for i in range(len(Y_true)):
        n_labels += len(Y_true[i])
        for label in Y_pred[i]:
            if label in Y_true[i]:
                n_correct += 1
    return float(n_correct) / n_labels


def test_ovr_exceptions():
    ovr = OneVsRestClassifier(LinearSVC())
    assert_raises(ValueError, ovr.predict, [])


def test_ovr_fit_predict():
    # A classifier which implements decision_function.
    ovr = OneVsRestClassifier(LinearSVC())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovr.estimators_), n_classes)

    pred2 = LinearSVC().fit(iris.data, iris.target).predict(iris.data)
    assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2))

    # A classifier which implements predict_proba.
    ovr = OneVsRestClassifier(MultinomialNB())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert_true(np.mean(iris.target == pred) >= 0.65)


def test_ovr_multilabel():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
    y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]]
    Y = np.array([[0, 1, 1],
                  [0, 1, 0],
                  [1, 1, 1],
                  [1, 0, 1],
                  [1, 0, 0]])

    for base_clf in (MultinomialNB(), LinearSVC(),
                     LinearRegression(), Ridge(),
                     ElasticNet(), Lasso(alpha=0.5)):
        # test input as lists of tuples
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        y_pred = clf.predict([[0, 4, 4]])[0]
        assert_equal(set(y_pred), set([1, 2]))
        assert_true(clf.multilabel_)

        # test input as label indicator matrix
        clf = OneVsRestClassifier(base_clf).fit(X, Y)
        y_pred = clf.predict([[0, 4, 4]])[0]
        assert_array_equal(y_pred, [0, 1, 1])
        assert_true(clf.multilabel_)


def test_ovr_fit_predict_svc():
    ovr = OneVsRestClassifier(svm.SVC())
    ovr.fit(iris.data, iris.target)
    assert_equal(len(ovr.estimators_), 3)
    assert_greater(ovr.score(iris.data, iris.target), .9)


def test_ovr_multilabel_dataset():
    base_clf = MultinomialNB(alpha=1)
    for au, prec, recall in zip((True, False), (0.65, 0.74), (0.72, 0.84)):
        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=2,
                                                       length=50,
                                                       allow_unlabeled=au,
                                                       random_state=0)
        X_train, Y_train = X[:80], Y[:80]
        X_test, Y_test = X[80:], Y[80:]
        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
        Y_pred = clf.predict(X_test)
        assert_true(clf.multilabel_)
        assert_almost_equal(multilabel_precision(Y_test, Y_pred), prec,
                            places=2)
        assert_almost_equal(multilabel_recall(Y_test, Y_pred), recall,
                            places=2)


def test_ovr_gridsearch():
    ovr = OneVsRestClassifier(LinearSVC())
    Cs = [0.1, 0.5, 0.8]
    cv = GridSearchCV(ovr, {'estimator__C': Cs})
    cv.fit(iris.data, iris.target)
    best_C = cv.best_estimator_.estimators_[0].C
    assert_true(best_C in Cs)


def test_ovr_coef_():
    ovr = OneVsRestClassifier(LinearSVC())
    ovr.fit(iris.data, iris.target)
    shape = ovr.coef_.shape
    assert_equal(shape[0], n_classes)
    assert_equal(shape[1], iris.data.shape[1])


def test_ovr_coef_exceptions():
    # Not fitted exception!
    ovr = OneVsRestClassifier(LinearSVC())
    # lambda is needed because we don't want coef_ to be evaluated right away
    assert_raises(ValueError, lambda x: ovr.coef_, None)

    # Doesn't have coef_ exception!
    ovr = OneVsRestClassifier(DecisionTreeClassifier())
    ovr.fit(iris.data, iris.target)
    assert_raises(AttributeError, lambda x: ovr.coef_, None)


def test_ovo_exceptions():
    ovo = OneVsOneClassifier(LinearSVC())
    assert_raises(ValueError, ovo.predict, [])


def test_ovo_fit_predict():
    # A classifier which implements decision_function.
    ovo = OneVsOneClassifier(LinearSVC())
    ovo.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)

    # A classifier which implements predict_proba.
    ovo = OneVsOneClassifier(MultinomialNB())
    ovo.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)


def test_ovo_gridsearch():
    ovo = OneVsOneClassifier(LinearSVC())
    Cs = [0.1, 0.5, 0.8]
    cv = GridSearchCV(ovo, {'estimator__C': Cs})
    cv.fit(iris.data, iris.target)
    best_C = cv.best_estimator_.estimators_[0].C
    assert_true(best_C in Cs)


def test_ecoc_exceptions():
    ecoc = OutputCodeClassifier(LinearSVC())
    assert_raises(ValueError, ecoc.predict, [])


def test_ecoc_fit_predict():
    # A classifier which implements decision_function.
    ecoc = OutputCodeClassifier(LinearSVC(), code_size=2)
    ecoc.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ecoc.estimators_), n_classes * 2)

    # A classifier which implements predict_proba.
    ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2)
    ecoc.fit(iris.data, iris.target).predict(iris.data)
    assert_equal(len(ecoc.estimators_), n_classes * 2)


def test_ecoc_gridsearch():
    ecoc = OutputCodeClassifier(LinearSVC())
    Cs = [0.1, 0.5, 0.8]
    cv = GridSearchCV(ecoc, {'estimator__C': Cs})
    cv.fit(iris.data, iris.target)
    best_C = cv.best_estimator_.estimators_[0].C
    assert_true(best_C in Cs)