File: test_pls.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (133 lines) | stat: -rw-r--r-- 5,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
from numpy.testing import assert_array_almost_equal
from sklearn.datasets import load_linnerud
from sklearn import pls

d = load_linnerud()
X = d.data
Y = d.target


def test_pls():
    # 1) Canonical (symetric) PLS (PLS 2 blocks canonical mode A)
    # ===========================================================
    # Compare 2 algo.: nipals vs. svd
    # ------------------------------
    pls_bynipals = pls.PLSCanonical(n_components=X.shape[1])
    pls_bynipals.fit(X, Y)
    pls_bysvd = pls.PLSCanonical(algorithm="svd", n_components=X.shape[1])
    pls_bysvd.fit(X, Y)
    # check equalities of loading (up to the sign of the second column)
    assert_array_almost_equal(
        pls_bynipals.x_loadings_,
        np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5,
        err_msg="nipals and svd implementation lead to different x loadings")

    assert_array_almost_equal(
        pls_bynipals.y_loadings_,
        np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5,
        err_msg="nipals and svd implementation lead to different y loadings")

    # Check PLS properties (with n_components=X.shape[1])
    # ---------------------------------------------------
    plsca = pls.PLSCanonical(n_components=X.shape[1])
    plsca.fit(X, Y)
    T = plsca.x_scores_
    P = plsca.x_loadings_
    Wx = plsca.x_weights_
    U = plsca.y_scores_
    Q = plsca.y_loadings_
    Wy = plsca.y_weights_

    def check_ortho(M, err_msg):
        K = np.dot(M.T, M)
        assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg)

    # Orthogonality of weights
    # ~~~~~~~~~~~~~~~~~~~~~~~~
    check_ortho(Wx, "x weights are not orthogonal")
    check_ortho(Wy, "y weights are not orthogonal")

    # Orthogonality of latent scores
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    check_ortho(T, "x scores are not orthogonal")
    check_ortho(U, "y scores are not orthogonal")

    # Check X = TP' and Y = UQ' (with (p == q) components)
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # center scale X, Y
    Xc, Yc, x_mean, y_mean, x_std, y_std =\
         pls._center_scale_xy(X.copy(), Y.copy(), scale=True)
    assert_array_almost_equal(Xc, np.dot(T, P.T),
        err_msg="X != TP'")
    assert_array_almost_equal(Yc, np.dot(U, Q.T),
        err_msg="Y != UQ'")

    # Check that rotations on training data lead to scores
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    Xr = plsca.transform(X)
    assert_array_almost_equal(Xr, plsca.x_scores_,
        err_msg="rotation on X failed")
    Xr, Yr = plsca.transform(X, Y)
    assert_array_almost_equal(Xr, plsca.x_scores_,
        err_msg="rotation on X failed")
    assert_array_almost_equal(Yr, plsca.y_scores_,
        err_msg="rotation on Y failed")

    # "Non regression test" on canonical PLS
    # --------------------------------------
    pls_ca = pls.PLSCanonical(n_components=X.shape[1])
    pls_ca.fit(X, Y)

    x_weights = np.array(
        [[-0.61330704,  0.25616119, -0.74715187],
         [-0.74697144,  0.11930791,  0.65406368],
         [-0.25668686, -0.95924297, -0.11817271]])
    assert_array_almost_equal(pls_ca.x_weights_, x_weights)

    x_rotations = np.array(
        [[-0.61330704,  0.41591889, -0.62297525],
         [-0.74697144,  0.31388326,  0.77368233],
         [-0.25668686, -0.89237972, -0.24121788]])
    assert_array_almost_equal(pls_ca.x_rotations_, x_rotations)

    y_weights = np.array(
        [[+0.58989127,  0.7890047,   0.1717553],
         [+0.77134053, -0.61351791,  0.16920272],
         [-0.23887670, -0.03267062,  0.97050016]])
    assert_array_almost_equal(pls_ca.y_weights_, y_weights)

    y_rotations = np.array(
        [[+0.58989127,  0.7168115,  0.30665872],
         [+0.77134053, -0.70791757,  0.19786539],
         [-0.23887670, -0.00343595,  0.94162826]])
    assert_array_almost_equal(pls_ca.y_rotations_, y_rotations)

    # 2) Regression PLS (PLS2): "Non regression test"
    # ===============================================
    pls_2 = pls.PLSRegression(n_components=X.shape[1])
    pls_2.fit(X, Y)

    x_weights = np.array(
        [[-0.61330704, -0.00443647,  0.78983213],
         [-0.74697144, -0.32172099, -0.58183269],
         [-0.25668686,  0.94682413, -0.19399983]])
    assert_array_almost_equal(pls_2.x_weights_, x_weights)

    x_loadings = np.array(
        [[-0.61470416, -0.24574278,  0.78983213],
         [-0.65625755, -0.14396183, -0.58183269],
         [-0.51733059,  1.00609417, -0.19399983]])
    assert_array_almost_equal(pls_2.x_loadings_, x_loadings)

    y_weights = np.array(
        [[+0.32456184,  0.29892183,  0.20316322],
         [+0.42439636,  0.61970543,  0.19320542],
         [-0.13143144, -0.26348971, -0.17092916]])
    assert_array_almost_equal(pls_2.y_weights_, y_weights)

    y_loadings = np.array(
        [[+0.32456184,  0.29892183,  0.20316322],
         [+0.42439636,  0.61970543,  0.19320542],
         [-0.13143144, -0.26348971, -0.17092916]])
    assert_array_almost_equal(pls_2.y_loadings_, y_loadings)