File: _tree.pyx

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (816 lines) | stat: -rw-r--r-- 26,740 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# encoding: utf-8
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
#
# Author: Peter Prettenhofer, Brian Holt, Gilles Louppe
#
# License: BSD Style.

cimport cython

import numpy as np
cimport numpy as np

# Define a datatype for the data array
DTYPE = np.float32
ctypedef np.float32_t DTYPE_t
ctypedef np.int8_t BOOL_t

cdef extern from "math.h":
    cdef extern double log(double x)
    cdef extern double pow(double base, double exponent)

cdef extern from "float.h":
    cdef extern double DBL_MAX


################################################################################
# Classification entropy measures
#
#    From Hastie et al. Elements of Statistical Learning, 2009.
#
#    If a target is a classification outcome taking on values 0,1,...,K-1
#    In node m, representing a region Rm with Nm observations, let
#
#       pmk = 1/ Nm \sum_{x_i in Rm} I(yi = k)
#
#    be the proportion of class k observations in node m

cdef class Criterion:
    """Interface for splitting criteria (regression and classification)"""

    cdef void init(self, DTYPE_t *y, BOOL_t *sample_mask, int n_samples,
                   int n_total_samples):
        """Initialise the criterion class for new split point."""
        pass

    cdef void reset(self):
        """Reset the criterion for a new feature index."""
        pass

    cdef int update(self, int a, int b, DTYPE_t *y, int *X_argsorted_i,
                    BOOL_t *sample_mask):
        """Update the criteria for each value in interval [a,b) (where a and b
           are indices in `X_argsorted_i`)."""
        pass

    cdef double eval(self):
        """Evaluate the criteria (aka the split error)."""
        pass

    cpdef np.ndarray init_value(self):
        """Get the init value of the criterion - `init` must be called before."""
        pass


cdef class ClassificationCriterion(Criterion):
    """Abstract criterion for classification.

    Attributes
    ----------
    n_classes : int
        The number of classes.

    n_samples : int
        The number of samples.

    label_count_left : int*
        The label counts for samples left of splitting point.

    label_count_right : int*
        The label counts for samples right of splitting point.

    label_count_init : int*
        The initial label counts for samples right of splitting point.
        Used to reset `label_count_right` for each feature.

    n_left : int
        The number of samples left of splitting point.

    n_right : int
        The number of samples right of splitting point.
    """
    cdef int n_classes
    cdef int n_samples
    cdef int* label_count_left
    cdef int* label_count_right
    cdef int* label_count_init
    cdef int n_left
    cdef int n_right

    # need to store ref to arrays to prevent GC
    cdef ndarray_label_count_left
    cdef ndarray_label_count_right
    cdef ndarray_label_count_init

    def __init__(self, int n_classes):
        cdef np.ndarray[np.int32_t, ndim=1] ndarray_label_count_left \
            = np.zeros((n_classes,), dtype=np.int32, order='C')
        cdef np.ndarray[np.int32_t, ndim=1] ndarray_label_count_right \
            = np.zeros((n_classes,), dtype=np.int32, order='C')
        cdef np.ndarray[np.int32_t, ndim=1] ndarray_label_count_init \
            = np.zeros((n_classes,), dtype=np.int32, order='C')

        self.n_classes = n_classes
        self.n_samples = 0
        self.n_left = 0
        self.n_right = 0
        self.label_count_left = <int*>ndarray_label_count_left.data
        self.label_count_right = <int*>ndarray_label_count_right.data
        self.label_count_init = <int*>ndarray_label_count_init.data
        self.ndarray_label_count_left = ndarray_label_count_left
        self.ndarray_label_count_right = ndarray_label_count_right
        self.ndarray_label_count_init = ndarray_label_count_init

    cdef void init(self, DTYPE_t *y, BOOL_t *sample_mask, int n_samples,
                   int n_total_samples):
        """Initialise the criterion class."""
        cdef int c = 0
        cdef int j = 0

        self.n_samples = n_samples

        for c from 0 <= c < self.n_classes:
            self.label_count_init[c] = 0

        for j from 0 <= j < n_total_samples:
            if sample_mask[j] == 0:
                continue
            c = <int>(y[j])
            self.label_count_init[c] += 1

        self.reset()

    cdef void reset(self):
        """Reset label_counts by setting `label_count_left to zero
        and copying the init array into the right."""
        cdef int c = 0
        self.n_left = 0
        self.n_right = self.n_samples

        for c from 0 <= c < self.n_classes:
            self.label_count_left[c] = 0
            self.label_count_right[c] = self.label_count_init[c]

    cdef int update(self, int a, int b, DTYPE_t *y, int *X_argsorted_i,
                    BOOL_t *sample_mask):
        """Update the criteria for each value in interval [a,b) (where a and b
           are indices in `X_argsorted_i`)."""
        cdef int c
        # post condition: all samples from [0:b) are on the left side
        for idx from a <= idx < b:
            s = X_argsorted_i[idx]
            if sample_mask[s] == 0:
                continue
            c = <int>(y[s])
            self.label_count_right[c] -= 1
            self.label_count_left[c] += 1
            self.n_right -= 1
            self.n_left += 1

        return self.n_left

    cdef double eval(self):
        pass

    cpdef np.ndarray init_value(self):
        return self.ndarray_label_count_init


cdef class Gini(ClassificationCriterion):
    """Gini Index splitting criteria.

    Gini index = \sum_{k=0}^{K-1} pmk (1 - pmk)
               = 1 - \sum_{k=0}^{K-1} pmk ** 2
    """

    cdef double eval(self):
        """Returns Gini index of left branch + Gini index of right branch. """
        cdef double n_left = <double> self.n_left
        cdef double n_right = <double> self.n_right
        cdef double H_left = n_left * n_left
        cdef double H_right = n_right * n_right
        cdef int k, count_left, count_right

        for k from 0 <= k < self.n_classes:
            count_left = self.label_count_left[k]
            if count_left > 0:
                H_left -= (count_left * count_left)
            count_right = self.label_count_right[k]
            if count_right > 0:
                H_right -= (count_right * count_right)

        if n_left == 0:
            H_left = 0
        else:
            H_left /= n_left

        if n_right == 0:
            H_right = 0
        else:
            H_right /= n_right

        return (H_left + H_right) / self.n_samples


cdef class Entropy(ClassificationCriterion):
    """Entropy splitting criteria.

    Cross Entropy = - \sum_{k=0}^{K-1} pmk log(pmk)
    """

    cdef double eval(self):
        """Returns Entropy of left branch + Entropy index of right branch. """
        cdef double H_left = 0.0
        cdef double H_right = 0.0
        cdef int k
        cdef double e1, e2
        cdef double n_left = <double> self.n_left
        cdef double n_right = <double> self.n_right

        for k from 0 <= k < self.n_classes:
            if self.label_count_left[k] > 0:
                H_left -= ((self.label_count_left[k] / n_left)
                           * log(self.label_count_left[k] / n_left))
            if self.label_count_right[k] > 0:
                H_right -= ((self.label_count_right[k] / n_right)
                            * log(self.label_count_right[k] / n_right))

        e1 = (n_left / self.n_samples) * H_left
        e2 = (n_right / self.n_samples) * H_right
        return e1 + e2


cdef class RegressionCriterion(Criterion):
    """Abstract criterion for regression. Computes variance of the
       target values left and right of the split point.

    Computation is linear in `n_samples` by using ::

        var = \sum_i^n (y_i - y_bar) ** 2
            = (\sum_i^n y_i ** 2) - n_samples y_bar ** 2

    Attributes
    ----------
    n_samples : int
        The number of samples

    mean_left : double
        The mean target value of the samples left of the split point.

    mean_right : double
        The mean target value of the samples right of the split.

    sq_sum_left : double
        The sum of squared target values left of the split point.

    sq_sum_right : double
        The sum of squared target values right of the split point.

    var_left : double
        The variance of the target values left of the split point.

    var_right : double
        The variance of the target values left of the split point.

    n_left : int
        number of samples left of split point.

    n_right : int
        number of samples right of split point.
    """

    cdef int n_samples
    cdef int n_right
    cdef int n_left

    cdef double mean_left
    cdef double mean_right
    cdef double mean_init

    cdef double sq_sum_right
    cdef double sq_sum_left
    cdef double sq_sum_init

    cdef double var_left
    cdef double var_right

    def __init__(self):
        self.n_samples = 0
        self.n_left = 0
        self.n_right = 0
        self.mean_left = 0.0
        self.mean_right = 0.0
        self.mean_init = 0.0
        self.sq_sum_right = 0.0
        self.sq_sum_left = 0.0
        self.sq_sum_init = 0.0
        self.var_left = 0.0
        self.var_right = 0.0

    cdef void init(self, DTYPE_t *y, BOOL_t *sample_mask, int n_samples,
                   int n_total_samples):
        """Initialise the criterion class; assume all samples
           are in the right branch and store the mean and squared
           sum in `self.mean_init` and `self.sq_sum_init`. """
        self.mean_left = 0.0
        self.mean_right = 0.0
        self.mean_init = 0.0
        self.sq_sum_right = 0.0
        self.sq_sum_left = 0.0
        self.sq_sum_init = 0.0
        self.var_left = 0.0
        self.var_right = 0.0
        self.n_samples = n_samples

        cdef int j = 0
        for j from 0 <= j < n_total_samples:
            if sample_mask[j] == 0:
                continue
            self.sq_sum_init += (y[j] * y[j])
            self.mean_init += y[j]

        self.mean_init = self.mean_init / self.n_samples

        self.reset()

    cdef void reset(self):
        """Reset criterion for new feature.

        Assume all data in right branch and copy statistics of the
        whole dataset into the auxiliary variables of the
        right branch.
        """
        self.n_right = self.n_samples
        self.n_left = 0
        self.mean_right = self.mean_init
        self.mean_left = 0.0
        self.sq_sum_right = self.sq_sum_init
        self.sq_sum_left = 0.0
        self.var_left = 0.0
        self.var_right = self.sq_sum_right - \
            self.n_samples * (self.mean_right * self.mean_right)

    cdef int update(self, int a, int b, DTYPE_t *y, int *X_argsorted_i,
                    BOOL_t *sample_mask):
        """Update the criteria for each value in interval [a,b) (where a and b
           are indices in `X_argsorted_i`)."""
        cdef double y_idx = 0.0
        cdef int idx, j
        # post condition: all samples from [0:b) are on the left side
        for idx from a <= idx < b:
            j = X_argsorted_i[idx]
            if sample_mask[j] == 0:
                continue
            y_idx = y[j]
            self.sq_sum_left = self.sq_sum_left + (y_idx * y_idx)
            self.sq_sum_right = self.sq_sum_right - (y_idx * y_idx)

            self.mean_left = (self.n_left * self.mean_left + y_idx) / \
                <double>(self.n_left + 1)
            self.mean_right = ((self.n_samples - self.n_left) * \
                self.mean_right - y_idx) / \
                <double>(self.n_samples - self.n_left - 1)

            self.n_right -= 1
            self.n_left += 1

            self.var_left = self.sq_sum_left - \
                self.n_left * (self.mean_left * self.mean_left)
            self.var_right = self.sq_sum_right - \
                self.n_right * (self.mean_right * self.mean_right)

        return self.n_left

    cdef double eval(self):
        pass

    cpdef np.ndarray init_value(self):
        ## TODO is calling np.asarray a performance issue?
        return np.asarray(self.mean_init)


cdef class MSE(RegressionCriterion):
    """Mean squared error impurity criterion.

    MSE = var_left + var_right
    """

    cdef double eval(self):
        return self.var_left + self.var_right


################################################################################
# Tree util functions
#


def _random_sample_mask(int n_total_samples, int n_total_in_bag, random_state):
    """Create a random sample mask where ``n_total_in_bag`` elements are set.

    Parameters
    ----------
    n_total_samples : int
        The length of the resulting mask.
    n_total_in_bag : int
        The number of elements in the sample mask which are set to 1.
    random_state : np.RandomState
        A numpy ``RandomState`` object.

    Returns
    -------
    sample_mask : np.ndarray, shape=[n_total_samples]
        An ndarray where ``n_total_in_bag`` elements are set to ``True``
        the others are ``False``.
    """
    cdef np.ndarray[np.float64_t, ndim=1, mode="c"] rand = \
         random_state.rand(n_total_samples)
    cdef np.ndarray[BOOL_t, ndim=1, mode="c"] sample_mask = \
         np.zeros((n_total_samples,), dtype=np.int8)

    cdef int n_bagged = 0
    cdef int i = 0
    for i in range(n_total_samples):
        if rand[i] * (n_total_samples - i) < (n_total_in_bag - n_bagged):
            sample_mask[i] = 1
            n_bagged += 1

    return sample_mask.astype(np.bool)


def _apply_tree(np.ndarray[DTYPE_t, ndim=2] X,
                np.ndarray[np.int32_t, ndim=2] children,
                np.ndarray[np.int32_t, ndim=1] feature,
                np.ndarray[np.float64_t, ndim=1] threshold,
                np.ndarray[np.int32_t, ndim=1] out):
    """Finds the terminal region (=leaf node) for each sample in
    `X` and sets the corresponding element in `out` to its node id."""
    cdef int i = 0
    cdef int n = X.shape[0]
    cdef int node_id = 0
    for i in xrange(n):
        node_id = 0
        # While node_id not a leaf
        while children[node_id, 0] != -1 and children[node_id, 1] != -1:
            if X[i, feature[node_id]] <= threshold[node_id]:
                node_id = children[node_id, 0]
            else:
                node_id = children[node_id, 1]
        out[i] = node_id


def _predict_tree(np.ndarray[DTYPE_t, ndim=2] X,
                  np.ndarray[np.int32_t, ndim=2] children,
                  np.ndarray[np.int32_t, ndim=1] feature,
                  np.ndarray[np.float64_t, ndim=1] threshold,
                  np.ndarray[np.float64_t, ndim=2] values,
                  np.ndarray[np.float64_t, ndim=2] pred):
    """Finds the terminal region (=leaf node) values for each sample. """
    cdef int i = 0
    cdef int n = X.shape[0]
    cdef int node_id = 0
    cdef int K = values.shape[1]
    for i in xrange(n):
        node_id = 0
        # While node_id not a leaf
        while children[node_id, 0] != -1 and children[node_id, 1] != -1:
            if X[i, feature[node_id]] <= threshold[node_id]:
                node_id = children[node_id, 0]
            else:
                node_id = children[node_id, 1]
        for k in xrange(K):
            pred[i, k] = values[node_id, k]


def _error_at_leaf(np.ndarray[DTYPE_t, ndim=1, mode="c"] y,
                   np.ndarray sample_mask, Criterion criterion,
                   int n_samples):
    """Compute criterion error at leaf with terminal region defined
    by `sample_mask`. """
    cdef int n_total_samples = y.shape[0]
    cdef DTYPE_t *y_ptr = <DTYPE_t *>y.data
    cdef BOOL_t *sample_mask_ptr = <BOOL_t *>sample_mask.data
    criterion.init(y_ptr, sample_mask_ptr, n_samples, n_total_samples)
    return criterion.eval()


cdef int smallest_sample_larger_than(int sample_idx, DTYPE_t *X_i,
                                     int *X_argsorted_i, BOOL_t *sample_mask,
                                     int n_total_samples):
    """Find the largest next sample.

    Find the index in the `X_i` array for sample who's feature
    `i` value is just about greater than those of the sample
    `X_argsorted_i[sample_idx]`.

    Returns
    -------
    next_sample_idx : int
        The index of the next smallest sample in `X_argsorted`
        with different feature value than `sample_idx` .
        I.e. `X_argsorted_i[sample_idx] < X_argsorted_i[next_sample_idx]`
        -1 if no such element exists.
    """
    cdef int idx = 0, j
    cdef DTYPE_t threshold = -DBL_MAX

    if sample_idx > -1:
        threshold = X_i[X_argsorted_i[sample_idx]]

    for idx from sample_idx < idx < n_total_samples:
        j = X_argsorted_i[idx]

        if sample_mask[j] == 0:
            continue

        if X_i[j] > threshold + 1.e-7:
            return idx

    return -1


def _find_best_split(np.ndarray[DTYPE_t, ndim=2, mode="fortran"] X,
                     np.ndarray[DTYPE_t, ndim=1, mode="c"] y,
                     np.ndarray[np.int32_t, ndim=2, mode="fortran"] X_argsorted,
                     np.ndarray sample_mask,
                     int n_samples,
                     int min_leaf,
                     int max_features,
                     Criterion criterion,
                     object random_state):
    """Find the best dimension and threshold that minimises the error.

    Parameters
    ----------
    X : ndarray, shape (n_total_samples, n_features), dtype=DTYPE_t
        The feature values.

    y : ndarray, shape (n_total_samples,), dtype=float
        The label to predict for each sample.

    X_argsorted : ndarray, shape (n_samples, n_features)
        Argsort of cols of `X`. `X_argsorted[0,j]` gives the example
        index of the smallest value of feature `j`.

    sample_mask : ndarray, shape (n_samples,), dtype=np.bool
        A mask for the samples to be considered. Only samples `j` for which
        sample_mask[j] != 0 are considered.

    n_samples : int
        The number of samples in the current sample_mask
        (i.e. `sample_mask.sum()`).

    min_leaf : int
        The minimum number of samples required to be at a leaf node.

    max_features : int
        The number of features to consider when looking for the best split.

    criterion : Criterion
        The criterion function to be minimized.

    random_state : RandomState
        The numpy random state to use.

    Returns
    -------
    best_i : int
        The split feature or -1 if criterion not smaller than
        `parent_split_error`.

    best_t : DTYPE_t
        The split threshold

    best_error : DTYPE_t
        The split error

    initial_error : DTYPE_t
        The initial error contained in the node.
    """
    # Variables declarations
    cdef int n_total_samples = X.shape[0]
    cdef int n_features = X.shape[1]
    cdef int i, a, b, best_i = -1
    cdef int n_left = 0
    cdef DTYPE_t t, initial_error, error
    cdef DTYPE_t best_error = np.inf, best_t = np.inf
    cdef DTYPE_t *y_ptr = <DTYPE_t *>y.data
    cdef DTYPE_t *X_i = NULL
    cdef int *X_argsorted_i = NULL
    cdef BOOL_t *sample_mask_ptr = <BOOL_t *>sample_mask.data

    # Compute the column strides (increment in pointer elements to get
    # from column i to i + 1) for `X` and `X_argsorted`
    cdef int X_elem_stride = X.strides[0]
    cdef int X_col_stride = X.strides[1]
    cdef int X_stride = X_col_stride / X_elem_stride
    cdef int X_argsorted_elem_stride = X_argsorted.strides[0]
    cdef int X_argsorted_col_stride = X_argsorted.strides[1]
    cdef int X_argsorted_stride = X_argsorted_col_stride / X_argsorted_elem_stride

    # Compute the initial criterion value in the node
    X_argsorted_i = <int *>X_argsorted.data
    criterion.init(y_ptr, sample_mask_ptr, n_samples, n_total_samples)
    initial_error = criterion.eval()

    if initial_error == 0:  # break early if the node is pure
        return best_i, best_t, initial_error, initial_error

    best_error = initial_error

    # Features to consider
    if max_features < 0 or max_features == n_features:
        features = np.arange(n_features)
    else:
        features = random_state.permutation(n_features)[:max_features]

    # Look for the best split
    for i in features:
        # Get i-th col of X and X_sorted
        X_i = (<DTYPE_t *>X.data) + X_stride * i
        X_argsorted_i = (<int *>X_argsorted.data) + X_argsorted_stride * i

        # Reset the criterion for this feature
        criterion.reset()

        # Index of smallest sample in X_argsorted_i that is in the sample mask
        a = 0
        while sample_mask_ptr[X_argsorted_i[a]] == 0:
            a = a + 1

        # Consider splits between two consecutive samples
        while True:
            # Find the following larger sample
            b = smallest_sample_larger_than(a, X_i, X_argsorted_i,
                                            sample_mask_ptr, n_total_samples)
            if b == -1:
                break

            # Better split than the best so far?
            n_left = criterion.update(a, b, y_ptr, X_argsorted_i, sample_mask_ptr)

            # Only consider splits that respect min_leaf
            if n_left < min_leaf or (n_samples - n_left) < min_leaf:
                a = b
                continue

            error = criterion.eval()

            if error < best_error:
                t = X_i[X_argsorted_i[a]] + \
                    ((X_i[X_argsorted_i[b]] - X_i[X_argsorted_i[a]]) / 2.0)
                if t == X_i[X_argsorted_i[b]]:
                    t = X_i[X_argsorted_i[a]]
                best_i = i
                best_t = t
                best_error = error

            # Proceed to the next interval
            a = b

    return best_i, best_t, best_error, initial_error

def _find_best_random_split(np.ndarray[DTYPE_t, ndim=2, mode="fortran"] X,
                            np.ndarray[DTYPE_t, ndim=1, mode="c"] y,
                            np.ndarray[np.int32_t, ndim=2, mode="fortran"] X_argsorted,
                            np.ndarray sample_mask,
                            int n_samples,
                            int min_leaf,
                            int max_features,
                            Criterion criterion,
                            object random_state):
    """Find the best dimension and threshold that minimises the error.

    Parameters
    ----------
    X : ndarray, shape (n_total_samples, n_features), dtype=DTYPE_t
        The feature values.

    y : ndarray, shape (n_total_samples,), dtype=float
        The label to predict for each sample.

    X_argsorted : ndarray, shape (n_samples, n_features)
        Argsort of cols of `X`. `X_argsorted[0,j]` gives the example
        index of the smallest value of feature `j`.

    sample_mask : ndarray, shape (n_samples,), dtype=np.bool
        A mask for the samples to be considered. Only samples `j` for which
        sample_mask[j] != 0 are considered.

    n_samples : int
        The number of samples in the current sample_mask
        (i.e. `sample_mask.sum()`).

    min_leaf : int
        The minimum number of samples required to be at a leaf node.

    max_features : int
        The number of features to consider when looking for the best split.

    criterion : Criterion
        The criterion function to be minimized.

    random_state : RandomState
        The numpy random state to use.

    Returns
    -------
    best_i : int
        The split feature or -1 if criterion not smaller than
        `parent_split_error`.

    best_t : DTYPE_t
        The split threshold

    best_error : DTYPE_t
        The split error

    initial_error : DTYPE_t
        The initial error contained in the node.
    """
    # Variables
    cdef int n_total_samples = X.shape[0]
    cdef int n_features = X.shape[1]
    cdef int i, a, b, best_i = -1
    cdef DTYPE_t t, initial_error, error
    cdef DTYPE_t best_error = np.inf, best_t = np.inf
    cdef DTYPE_t *y_ptr = <DTYPE_t *>y.data
    cdef DTYPE_t *X_i = NULL
    cdef int *X_argsorted_i = NULL
    cdef BOOL_t *sample_mask_ptr = <BOOL_t *>sample_mask.data

    # Compute the column strides (increment in pointer elements to get
    # from column i to i + 1) for `X` and `X_argsorted`
    cdef int X_elem_stride = X.strides[0]
    cdef int X_col_stride = X.strides[1]
    cdef int X_stride = X_col_stride / X_elem_stride
    cdef int X_argsorted_elem_stride = X_argsorted.strides[0]
    cdef int X_argsorted_col_stride = X_argsorted.strides[1]
    cdef int X_argsorted_stride = X_argsorted_col_stride / X_argsorted_elem_stride

    # Compute the initial criterion value
    X_argsorted_i = <int *>X_argsorted.data
    criterion.init(y_ptr, sample_mask_ptr, n_samples, n_total_samples)
    initial_error = criterion.eval()

    if initial_error == 0:  # break early if the node is pure
        return best_i, best_t, best_error, initial_error

    best_error = initial_error

    # Features to consider
    if max_features == n_features:
        features = np.arange(n_features)
    else:
        features = random_state.permutation(n_features)[:max_features]

    # Look for the best random split
    for i in features:
        # Get i-th col of X and X_sorted
        X_i = (<DTYPE_t *>X.data) + X_stride * i
        X_argsorted_i = (<int *>X_argsorted.data) + X_argsorted_stride * i

        # Reset the criterion for this feature
        criterion.reset()

        # Find min and max
        a = 0
        while sample_mask_ptr[X_argsorted_i[a]] == 0:
            a = a + 1

        b = n_total_samples - 1
        while sample_mask_ptr[X_argsorted_i[b]] == 0:
            b = b - 1

        if b <= a or X_i[X_argsorted_i[a]] == X_i[X_argsorted_i[b]]:
            continue

        # Draw a random threshold in [a, b)
        t = X_i[X_argsorted_i[a]] + random_state.rand() * (X_i[X_argsorted_i[b]] - X_i[X_argsorted_i[a]])
        if t == X_i[X_argsorted_i[b]]:
            t = X_i[X_argsorted_i[a]]

        # Find the sample just greater than t
        c = a + 1

        while True:
            if sample_mask_ptr[X_argsorted_i[c]] != 0:
                if X_i[X_argsorted_i[c]] > t or c == b:
                    break

            c += 1

        # Better than the best so far?
        n_left = criterion.update(0, c, y_ptr, X_argsorted_i, sample_mask_ptr)
        error = criterion.eval()

        if n_left < min_leaf or (n_samples - n_left) < min_leaf:
            continue

        if error < best_error:
            best_i = i
            best_t = t
            best_error = error

    return best_i, best_t, best_error, initial_error