File: test_tree.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (353 lines) | stat: -rw-r--r-- 11,501 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
Testing for the tree module (sklearn.tree).
"""

import numpy as np
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_almost_equal
from numpy.testing import assert_equal
from nose.tools import assert_raises
from nose.tools import assert_true

from sklearn import tree
from sklearn import datasets

# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]

# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
rng = np.random.RandomState(1)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]

# also load the boston dataset
# and randomly permute it
boston = datasets.load_boston()
perm = rng.permutation(boston.target.size)
boston.data = boston.data[perm]
boston.target = boston.target[perm]


def test_classification_toy():
    """Check classification on a toy dataset."""
    clf = tree.DecisionTreeClassifier()
    clf.fit(X, y)

    assert_array_equal(clf.predict(T), true_result)

    # With subsampling
    clf = tree.DecisionTreeClassifier(max_features=1, random_state=1)
    clf.fit(X, y)

    assert_array_equal(clf.predict(T), true_result)


def test_regression_toy():
    """Check regression on a toy dataset."""
    clf = tree.DecisionTreeRegressor()
    clf.fit(X, y)

    assert_almost_equal(clf.predict(T), true_result)

    # With subsampling
    clf = tree.DecisionTreeRegressor(max_features=1, random_state=1)
    clf.fit(X, y)

    assert_almost_equal(clf.predict(T), true_result)


def test_graphviz_toy():
    """Check correctness of graphviz output on a toy dataset."""
    clf = tree.DecisionTreeClassifier(max_depth=3, min_samples_split=1)
    clf.fit(X, y)
    from StringIO import StringIO

    # test export code
    out = StringIO()
    tree.export_graphviz(clf, out_file=out)
    contents1 = out.getvalue()

    tree_toy = StringIO("digraph Tree {\n"
    "0 [label=\"X[0] <= 0.0000\\nerror = 0.5"
    "\\nsamples = 6\\nvalue = [ 3.  3.]\", shape=\"box\"] ;\n"
    "1 [label=\"error = 0.0000\\nsamples = 3\\nvalue = [ 3.  0.]\", shape=\"box\"] ;\n"
    "0 -> 1 ;\n"
    "2 [label=\"error = 0.0000\\nsamples = 3\\nvalue = [ 0.  3.]\", shape=\"box\"] ;\n"
    "0 -> 2 ;\n"
    "}")
    contents2 = tree_toy.getvalue()

    assert contents1 == contents2, \
        "graphviz output test failed\n: %s != %s" % (contents1, contents2)

    # test with feature_names
    out = StringIO()
    out = tree.export_graphviz(clf, out_file=out,
                               feature_names=["feature1", ""])
    contents1 = out.getvalue()

    tree_toy = StringIO("digraph Tree {\n"
    "0 [label=\"feature1 <= 0.0000\\nerror = 0.5"
    "\\nsamples = 6\\nvalue = [ 3.  3.]\", shape=\"box\"] ;\n"
    "1 [label=\"error = 0.0000\\nsamples = 3\\nvalue = [ 3.  0.]\", shape=\"box\"] ;\n"
    "0 -> 1 ;\n"
    "2 [label=\"error = 0.0000\\nsamples = 3\\nvalue = [ 0.  3.]\", shape=\"box\"] ;\n"
    "0 -> 2 ;\n"
    "}")
    contents2 = tree_toy.getvalue()

    assert contents1 == contents2, \
        "graphviz output test failed\n: %s != %s" % (contents1, contents2)

    # test improperly formed feature_names
    out = StringIO()
    assert_raises(IndexError, tree.export_graphviz,
                  clf, out, feature_names=[])


def test_iris():
    """Check consistency on dataset iris."""
    for c in ('gini', \
              'entropy'):
        clf = tree.DecisionTreeClassifier(criterion=c)\
              .fit(iris.data, iris.target)

        score = np.mean(clf.predict(iris.data) == iris.target)
        assert score > 0.9, "Failed with criterion " + c + \
            " and score = " + str(score)

        clf = tree.DecisionTreeClassifier(criterion=c,
                                          max_features=2,
                                          random_state=1)\
              .fit(iris.data, iris.target)

        score = np.mean(clf.predict(iris.data) == iris.target)
        assert score > 0.5, "Failed with criterion " + c + \
            " and score = " + str(score)


def test_boston():
    """Check consistency on dataset boston house prices."""
    for c in ('mse',):
        clf = tree.DecisionTreeRegressor(criterion=c)\
              .fit(boston.data, boston.target)

        score = np.mean(np.power(clf.predict(boston.data) - boston.target, 2))
        assert score < 1, "Failed with criterion " + c + \
            " and score = " + str(score)

        clf = tree.DecisionTreeRegressor(criterion=c,
                                         max_features=6,
                                         random_state=1)\
              .fit(boston.data, boston.target)

        #using fewer features reduces the learning ability of this tree,
        # but reduces training time.
        score = np.mean(np.power(clf.predict(boston.data) - boston.target, 2))
        assert score < 2, "Failed with criterion " + c + \
            " and score = " + str(score)


def test_probability():
    """Predict probabilities using DecisionTreeClassifier."""
    clf = tree.DecisionTreeClassifier(max_depth=1, max_features=1,
            random_state=42)
    clf.fit(iris.data, iris.target)

    prob_predict = clf.predict_proba(iris.data)
    assert_array_almost_equal(
        np.sum(prob_predict, 1), np.ones(iris.data.shape[0]))
    assert np.mean(np.argmax(prob_predict, 1)
                   == clf.predict(iris.data)) > 0.9

    assert_almost_equal(clf.predict_proba(iris.data),
                        np.exp(clf.predict_log_proba(iris.data)), 8)


def test_arrayrepr():
    """Check the array representation."""
    # Check resize
    clf = tree.DecisionTreeRegressor(max_depth=None)
    X = np.arange(10000)[:, np.newaxis]
    y = np.arange(10000)
    clf.fit(X, y)


def test_numerical_stability():
    """Check numerical stability."""
    old_settings = np.geterr()
    np.seterr(all="raise")

    X = np.array(
       [[152.08097839, 140.40744019, 129.75102234, 159.90493774],
        [142.50700378, 135.81935120, 117.82884979, 162.75781250],
        [127.28772736, 140.40744019, 129.75102234, 159.90493774],
        [132.37025452, 143.71923828, 138.35694885, 157.84558105],
        [103.10237122, 143.71928406, 138.35696411, 157.84559631],
        [127.71276855, 143.71923828, 138.35694885, 157.84558105],
        [120.91514587, 140.40744019, 129.75102234, 159.90493774]])

    y = np.array(
        [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916,  0.49622521])

    dt = tree.DecisionTreeRegressor()
    dt.fit(X, y)
    dt.fit(-X, y)

    np.seterr(**old_settings)


def test_importances():
    """Check variable importances."""
    X, y = datasets.make_classification(n_samples=1000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)

    clf = tree.DecisionTreeClassifier(compute_importances=True)
    clf.fit(X, y)
    importances = clf.feature_importances_
    n_important = sum(importances > 0.1)

    assert_equal(importances.shape[0], 10)
    assert_equal(n_important, 3)

    X_new = clf.transform(X, threshold="mean")
    assert 0 < X_new.shape[1] < X.shape[1]

    clf = tree.DecisionTreeClassifier()
    clf.fit(X, y)
    assert_true(clf.feature_importances_ is None)


def test_error():
    """Test that it gives proper exception on deficient input."""
    # Invalid values for parameters
    assert_raises(ValueError,
                  tree.DecisionTreeClassifier(min_samples_leaf=-1).fit,
                  X, y)

    assert_raises(ValueError,
                  tree.DecisionTreeClassifier(max_depth=-1).fit,
                  X, y)

    assert_raises(ValueError,
                  tree.DecisionTreeClassifier(min_density=2.0).fit,
                  X, y)

    assert_raises(ValueError,
                  tree.DecisionTreeClassifier(max_features=42).fit,
                  X, y)

    # Wrong dimensions
    clf = tree.DecisionTreeClassifier()
    y2 = y[:-1]
    assert_raises(ValueError, clf.fit, X, y2)

    # Test with arrays that are non-contiguous.
    Xf = np.asfortranarray(X)
    clf = tree.DecisionTreeClassifier()
    clf.fit(Xf, y)
    assert_array_equal(clf.predict(T), true_result)

    # predict before fitting
    clf = tree.DecisionTreeClassifier()
    assert_raises(Exception, clf.predict, T)
    # predict on vector with different dims
    clf.fit(X, y)
    t = np.asarray(T)
    assert_raises(ValueError, clf.predict, t[:, 1:])

   # use values of max_features that are invalid
    clf = tree.DecisionTreeClassifier(max_features=10)
    assert_raises(ValueError, clf.fit, X, y)

    clf = tree.DecisionTreeClassifier(max_features=-1)
    assert_raises(ValueError, clf.fit, X, y)

    clf = tree.DecisionTreeClassifier(max_features="foobar")
    assert_raises(ValueError, clf.fit, X, y)

    tree.DecisionTreeClassifier(max_features="auto").fit(X, y)
    tree.DecisionTreeClassifier(max_features="sqrt").fit(X, y)
    tree.DecisionTreeClassifier(max_features="log2").fit(X, y)
    tree.DecisionTreeClassifier(max_features=None).fit(X, y)

    # predict before fit
    clf = tree.DecisionTreeClassifier()
    assert_raises(Exception, clf.predict_proba, X)

    clf.fit(X, y)
    X2 = [-2, -1, 1]  # wrong feature shape for sample
    assert_raises(ValueError, clf.predict_proba, X2)

    # wrong sample shape
    Xt = np.array(X).T

    clf = tree.DecisionTreeClassifier()
    clf.fit(np.dot(X, Xt), y)
    assert_raises(ValueError, clf.predict, X)

    clf = tree.DecisionTreeClassifier()
    clf.fit(X, y)
    assert_raises(ValueError, clf.predict, Xt)


def test_min_samples_leaf():
    """Test if leaves contain more than leaf_count training examples"""
    for tree_class in [tree.DecisionTreeClassifier, tree.ExtraTreeClassifier]:
        clf = tree_class(min_samples_leaf=5).fit(iris.data, iris.target)

        # apply tree
        out = np.empty((iris.data.shape[0], ), dtype=np.int32)
        X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE))
        tree._tree._apply_tree(X, clf.tree_.children, clf.tree_.feature,
                clf.tree_.threshold, out)
        # count node occurences
        node_counts = np.bincount(out)
        # drop inner nodes
        leaf_count = node_counts[node_counts != 0]
        assert np.min(leaf_count) >= 5


def test_pickle():
    import pickle

    # classification
    obj = tree.DecisionTreeClassifier()
    obj.fit(iris.data, iris.target)
    score = obj.score(iris.data, iris.target)
    s = pickle.dumps(obj)

    obj2 = pickle.loads(s)
    assert_equal(type(obj2), obj.__class__)
    score2 = obj2.score(iris.data, iris.target)
    assert score == score2, "Failed to generate same score " + \
            " after pickling (classification) "

    # regression
    obj = tree.DecisionTreeRegressor()
    obj.fit(boston.data, boston.target)
    score = obj.score(boston.data, boston.target)
    s = pickle.dumps(obj)

    obj2 = pickle.loads(s)
    assert_equal(type(obj2), obj.__class__)
    score2 = obj2.score(boston.data, boston.target)
    assert score == score2, "Failed to generate same score " + \
            " after pickling (regression) "


if __name__ == "__main__":
    import nose
    nose.runmodule()