File: __init__.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (313 lines) | stat: -rw-r--r-- 8,783 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
The :mod:`sklearn.utils` module includes various utilites.
"""

import numpy as np
import warnings

from .validation import *
from .murmurhash import murmurhash3_32

# Make sure that DeprecationWarning get printed
warnings.simplefilter("always", DeprecationWarning)


class deprecated(object):
    """Decorator to mark a function or class as deprecated.

    Issue a warning when the function is called/the class is instantiated and
    adds a warning to the docstring.

    The optional extra argument will be appended to the deprecation message
    and the docstring. Note: to use this with the default value for extra, put
    in an empty of parentheses:

    >>> from sklearn.utils import deprecated
    >>> deprecated() # doctest: +ELLIPSIS
    <sklearn.utils.deprecated object at ...>

    >>> @deprecated()
    ... def some_function(): pass
    """

    # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary,
    # but with many changes.

    def __init__(self, extra=''):
        """
        Parameters
        ----------
        extra: string
          to be added to the deprecation messages

        """
        self.extra = extra

    def __call__(self, obj):
        if isinstance(obj, type):
            return self._decorate_class(obj)
        else:
            return self._decorate_fun(obj)

    def _decorate_class(self, cls):
        msg = "Class %s is deprecated" % cls.__name__
        if self.extra:
            msg += "; %s" % self.extra

        # FIXME: we should probably reset __new__ for full generality
        init = cls.__init__

        def wrapped(*args, **kwargs):
            warnings.warn(msg, category=DeprecationWarning)
            return init(*args, **kwargs)
        cls.__init__ = wrapped

        wrapped.__name__ = '__init__'
        wrapped.__doc__ = self._update_doc(init.__doc__)
        wrapped.deprecated_original = init

        return cls

    def _decorate_fun(self, fun):
        """Decorate function fun"""

        msg = "Function %s is deprecated" % fun.__name__
        if self.extra:
            msg += "; %s" % self.extra

        def wrapped(*args, **kwargs):
            warnings.warn(msg, category=DeprecationWarning)
            return fun(*args, **kwargs)

        wrapped.__name__ = fun.__name__
        wrapped.__dict__ = fun.__dict__
        wrapped.__doc__ = self._update_doc(fun.__doc__)

        return wrapped

    def _update_doc(self, olddoc):
        newdoc = "DEPRECATED"
        if self.extra:
            newdoc = "%s: %s" % (newdoc, self.extra)
        if olddoc:
            newdoc = "%s\n\n%s" % (newdoc, olddoc)
        return newdoc


def safe_mask(X, mask):
    """Return a mask which is safe to use on X.

    Parameters
    ----------
        X : {array-like, sparse matrix}
            Data on which to apply mask.

        mask: array
            Mask to be used on X.

    Returns
    -------
        mask
    """
    mask = np.asanyarray(mask)
    if hasattr(X, "toarray"):
        ind = np.arange(mask.shape[0])
        mask = ind[mask]
    return mask


def resample(*arrays, **options):
    """Resample arrays or sparse matrices in a consistent way

    The default strategy implements one step of the bootstrapping
    procedure.

    Parameters
    ----------
    `*arrays` : sequence of arrays or scipy.sparse matrices with same shape[0]

    replace : boolean, True by default
        Implements resampling with replacement. If False, this will implement
        (sliced) random permutations.

    n_samples : int, None by default
        Number of samples to generate. If left to None this is
        automatically set to the first dimension of the arrays.

    random_state : int or RandomState instance
        Control the shuffling for reproducible behavior.

    Returns
    -------
    Sequence of resampled views of the collections. The original arrays are
    not impacted.

    Examples
    --------
    It is possible to mix sparse and dense arrays in the same run::

      >>> X = [[1., 0.], [2., 1.], [0., 0.]]
      >>> y = np.array([0, 1, 2])

      >>> from scipy.sparse import coo_matrix
      >>> X_sparse = coo_matrix(X)

      >>> from sklearn.utils import resample
      >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
      >>> X
      array([[ 1.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> X_sparse                            # doctest: +NORMALIZE_WHITESPACE
      <3x2 sparse matrix of type '<type 'numpy.float64'>'
          with 4 stored elements in Compressed Sparse Row format>

      >>> X_sparse.toarray()
      array([[ 1.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> y
      array([0, 1, 0])

      >>> resample(y, n_samples=2, random_state=0)
      array([0, 1])


    See also
    --------
    :class:`sklearn.cross_validation.Bootstrap`
    :func:`sklearn.utils.shuffle`
    """
    random_state = check_random_state(options.pop('random_state', None))
    replace = options.pop('replace', True)
    max_n_samples = options.pop('n_samples', None)
    if options:
        raise ValueError("Unexpected kw arguments: %r" % options.keys())

    if len(arrays) == 0:
        return None

    first = arrays[0]
    n_samples = first.shape[0] if hasattr(first, 'shape') else len(first)

    if max_n_samples is None:
        max_n_samples = n_samples

    if max_n_samples > n_samples:
        raise ValueError("Cannot sample %d out of arrays with dim %d" % (
            max_n_samples, n_samples))

    arrays = check_arrays(*arrays, sparse_format='csr')

    if replace:
        indices = random_state.randint(0, n_samples, size=(max_n_samples,))
    else:
        indices = np.arange(n_samples)
        random_state.shuffle(indices)
        indices = indices[:max_n_samples]

    resampled_arrays = []

    for array in arrays:
        array = array[indices]
        resampled_arrays.append(array)

    if len(resampled_arrays) == 1:
        # syntactic sugar for the unit argument case
        return resampled_arrays[0]
    else:
        return resampled_arrays


def shuffle(*arrays, **options):
    """Shuffle arrays or sparse matrices in a consistent way

    This is a convenience alias to ``resample(*arrays, replace=False)`` to do
    random permutations of the collections.

    Parameters
    ----------
    `*arrays` : sequence of arrays or scipy.sparse matrices with same shape[0]

    random_state : int or RandomState instance
        Control the shuffling for reproducible behavior.

    n_samples : int, None by default
        Number of samples to generate. If left to None this is
        automatically set to the first dimension of the arrays.

    Returns
    -------
    Sequence of shuffled views of the collections. The original arrays are
    not impacted.

    Examples
    --------
    It is possible to mix sparse and dense arrays in the same run::

      >>> X = [[1., 0.], [2., 1.], [0., 0.]]
      >>> y = np.array([0, 1, 2])

      >>> from scipy.sparse import coo_matrix
      >>> X_sparse = coo_matrix(X)

      >>> from sklearn.utils import shuffle
      >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
      >>> X
      array([[ 0.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> X_sparse                            # doctest: +NORMALIZE_WHITESPACE
      <3x2 sparse matrix of type '<type 'numpy.float64'>'
          with 3 stored elements in Compressed Sparse Row format>

      >>> X_sparse.toarray()
      array([[ 0.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> y
      array([2, 1, 0])

      >>> shuffle(y, n_samples=2, random_state=0)
      array([0, 1])

    See also
    --------
    :func:`sklearn.utils.resample`
    """
    options['replace'] = False
    return resample(*arrays, **options)


def gen_even_slices(n, n_packs):
    """Generator to create n_packs slices going up to n.

    Examples
    --------
    >>> from sklearn.utils import gen_even_slices
    >>> list(gen_even_slices(10, 1))
    [slice(0, 10, None)]
    >>> list(gen_even_slices(10, 10))                     #doctest: +ELLIPSIS
    [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)]
    >>> list(gen_even_slices(10, 5))                      #doctest: +ELLIPSIS
    [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)]
    >>> list(gen_even_slices(10, 3))
    [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]
    """
    start = 0
    for pack_num in range(n_packs):
        this_n = n // n_packs
        if pack_num < n % n_packs:
            this_n += 1
        if this_n > 0:
            end = start + this_n
            yield slice(start, end, None)
            start = end


class ConvergenceWarning(Warning):
    "Custom warning to capture convergence problems"