1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
# encoding: utf-8
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
#
# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD Style.
import numpy as np
cimport numpy as np
cimport cython
cdef class SequentialDataset:
"""Base class for datasets with sequential data access. """
cdef void next(self, DOUBLE **x_data_ptr, INTEGER **x_ind_ptr,
int *nnz, DOUBLE *y, DOUBLE *sample_weight):
"""Get the next example ``x`` from the dataset.
Parameters
----------
x_data_ptr : np.float64**
A pointer to the double array which holds the feature
values of the next example.
x_ind_ptr : np.int32**
A pointer to the int32 array which holds the feature
indices of the next example.
nnz : int*
A pointer to an int holding the number of non-zero
values of the next example.
y : np.float64*
The target value of the next example.
sample_weight : np.float64*
The weight of the next example.
"""
raise NotImplementedError()
cdef void shuffle(self, seed):
"""Permutes the ordering of examples. """
raise NotImplementedError()
cdef class ArrayDataset(SequentialDataset):
"""Dataset backed by a two-dimensional numpy array.
The dtype of the numpy array is expected to be ``np.float64``
and C-style memory layout.
"""
def __cinit__(self, np.ndarray[DOUBLE, ndim=2, mode='c'] X,
np.ndarray[DOUBLE, ndim=1, mode='c'] Y,
np.ndarray[DOUBLE, ndim=1, mode='c'] sample_weights):
"""A ``SequentialDataset`` backed by a two-dimensional numpy array.
Paramters
---------
X : ndarray, dtype=np.float64, ndim=2, mode='c'
The samples; a two-dimensional c-continuous numpy array of
dtype np.float64.
Y : ndarray, dtype=np.float64, ndim=1, mode='c'
The target values; a one-dimensional c-continuous numpy array of
dtype np.float64.
sample_weights : ndarray, dtype=np.float64, ndim=1, mode='c'
The weight of each sample; a one-dimensional c-continuous numpy
array of dtype np.float64.
"""
self.n_samples = X.shape[0]
self.n_features = X.shape[1]
cdef np.ndarray[INTEGER, ndim=1,
mode='c'] feature_indices = np.arange(0, self.n_features,
dtype=np.int32)
self.feature_indices = feature_indices
self.feature_indices_ptr = <INTEGER *> feature_indices.data
self.current_index = -1
self.stride = X.strides[0] / X.strides[1]
self.X_data_ptr = <DOUBLE *>X.data
self.Y_data_ptr = <DOUBLE *>Y.data
self.sample_weight_data = <DOUBLE *>sample_weights.data
# Use index array for fast shuffling
cdef np.ndarray[INTEGER, ndim=1,
mode='c'] index = np.arange(0, self.n_samples,
dtype=np.int32)
self.index = index
self.index_data_ptr = <INTEGER *> index.data
cdef void next(self, DOUBLE **x_data_ptr, INTEGER **x_ind_ptr,
int *nnz, DOUBLE *y, DOUBLE *sample_weight):
cdef int current_index = self.current_index
if current_index >= (self.n_samples - 1):
current_index = -1
current_index += 1
cdef int sample_idx = self.index_data_ptr[current_index]
cdef int offset = sample_idx * self.stride
y[0] = self.Y_data_ptr[sample_idx]
x_data_ptr[0] = self.X_data_ptr + offset
x_ind_ptr[0] = self.feature_indices_ptr
nnz[0] = self.n_features
sample_weight[0] = self.sample_weight_data[sample_idx]
self.current_index = current_index
cdef void shuffle(self, seed):
np.random.RandomState(seed).shuffle(self.index)
cdef class CSRDataset(SequentialDataset):
"""A ``SequentialDataset`` backed by a scipy sparse CSR matrix. """
def __cinit__(self, np.ndarray[DOUBLE, ndim=1, mode='c'] X_data,
np.ndarray[INTEGER, ndim=1, mode='c'] X_indptr,
np.ndarray[INTEGER, ndim=1, mode='c'] X_indices,
np.ndarray[DOUBLE, ndim=1, mode='c'] Y,
np.ndarray[DOUBLE, ndim=1, mode='c'] sample_weight):
"""Dataset backed by a scipy sparse CSR matrix.
The feature indices of ``x`` are given by x_ind_ptr[0:nnz].
The corresponding feature values are given by
x_data_ptr[0:nnz].
Parameters
----------
X_data : ndarray, dtype=np.float64, ndim=1, mode='c'
The data array of the CSR matrix; a one-dimensional c-continuous
numpy array of dtype np.float64.
X_indptr : ndarray, dtype=np.int32, ndim=1, mode='c'
The index pointer array of the CSR matrix; a one-dimensional
c-continuous numpy array of dtype np.int32.
X_indices : ndarray, dtype=np.int32, ndim=1, mode='c'
The column indices array of the CSR matrix; a one-dimensional
c-continuous numpy array of dtype np.int32.
Y : ndarray, dtype=np.float64, ndim=1, mode='c'
The target values; a one-dimensional c-continuous numpy array of
dtype np.float64.
sample_weights : ndarray, dtype=np.float64, ndim=1, mode='c'
The weight of each sample; a one-dimensional c-continuous numpy
array of dtype np.float64.
"""
self.n_samples = Y.shape[0]
self.current_index = -1
self.X_data_ptr = <DOUBLE *>X_data.data
self.X_indptr_ptr = <INTEGER *>X_indptr.data
self.X_indices_ptr = <INTEGER *>X_indices.data
self.Y_data_ptr = <DOUBLE *>Y.data
self.sample_weight_data = <DOUBLE *> sample_weight.data
# Use index array for fast shuffling
cdef np.ndarray[INTEGER, ndim=1,
mode='c'] index = np.arange(0, self.n_samples,
dtype=np.int32)
self.index = index
self.index_data_ptr = <INTEGER *> index.data
cdef void next(self, DOUBLE **x_data_ptr, INTEGER **x_ind_ptr,
int *nnz, DOUBLE *y, DOUBLE *sample_weight):
cdef int current_index = self.current_index
if current_index >= (self.n_samples - 1):
current_index = -1
current_index += 1
cdef int sample_idx = self.index_data_ptr[current_index]
cdef int offset = self.X_indptr_ptr[sample_idx]
y[0] = self.Y_data_ptr[sample_idx]
x_data_ptr[0] = self.X_data_ptr + offset
x_ind_ptr[0] = self.X_indices_ptr + offset
nnz[0] = self.X_indptr_ptr[sample_idx + 1] - offset
sample_weight[0] = self.sample_weight_data[sample_idx]
self.current_index = current_index
cdef void shuffle(self, seed):
np.random.RandomState(seed).shuffle(self.index)
|