File: test_sparsefuncs.py

package info (click to toggle)
scikit-learn 0.11.0-2%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 13,900 kB
  • sloc: python: 34,740; ansic: 8,860; cpp: 8,849; pascal: 230; makefile: 211; sh: 14
file content (21 lines) | stat: -rw-r--r-- 609 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
import scipy.sparse as sp
from numpy.testing import assert_array_almost_equal

from sklearn.datasets import make_classification
from sklearn.utils.sparsefuncs import mean_variance_axis0


def test_mean_variance_axis0():
    X, _ = make_classification(5, 4, random_state=0)
    # Sparsify the array a little bit
    X[0, 0] = 0
    X[2, 1] = 0
    X[4, 3] = 0
    X_csr = sp.csr_matrix(X)
    X_csr[1, 0] = 0
    X[1, 0] = 0
    X_means, X_vars = mean_variance_axis0(X_csr)

    assert_array_almost_equal(X_means, np.mean(X, axis=0))
    assert_array_almost_equal(X_vars, np.var(X, axis=0))