1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
"""
Utilities for input validation
"""
import numpy as np
import scipy.sparse as sp
import warnings
def assert_all_finite(X):
"""Throw a ValueError if X contains NaN or infinity.
Input MUST be an np.ndarray instance or a scipy.sparse matrix."""
# First try an O(n) time, O(1) space solution for the common case that
# there everything is finite; fall back to O(n) space np.isfinite to
# prevent false positives from overflow in sum method.
if X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) \
and not np.isfinite(X).all():
raise ValueError("array contains NaN or infinity")
def safe_asarray(X, dtype=None, order=None):
"""Convert X to an array or sparse matrix.
Prevents copying X when possible; sparse matrices are passed through."""
if not sp.issparse(X):
X = np.asarray(X, dtype, order)
assert_all_finite(X)
return X
def as_float_array(X, copy=True):
"""Converts an array-like to an array of floats
The new dtype will be np.float32 or np.float64, depending on the original
type. The function can create a copy or modify the argument depending
on the argument copy.
Parameters
----------
X : array
copy : bool, optional
If True, a copy of X will be created. If False, a copy may still be
returned if X's dtype is not a floating point type.
Returns
-------
X : array
An array of type np.float
"""
if isinstance(X, np.matrix):
X = X.A
elif not isinstance(X, np.ndarray) and not sp.issparse(X):
return safe_asarray(X, dtype=np.float64)
if X.dtype in [np.float32, np.float64]:
return X.copy() if copy else X
if X.dtype == np.int32:
X = X.astype(np.float32)
else:
X = X.astype(np.float64)
return X
def array2d(X, dtype=None, order=None):
"""Returns at least 2-d array with data from X"""
return np.asarray(np.atleast_2d(X), dtype=dtype, order=order)
def atleast2d_or_csr(X, dtype=None, order=None):
"""Like numpy.atleast_2d, but converts sparse matrices to CSR format
Also, converts np.matrix to np.ndarray.
"""
if sp.issparse(X):
# Note: order is ignored because CSR matrices hold data in 1-d arrays
if dtype is None or X.dtype == dtype:
X = X.tocsr()
else:
X = sp.csr_matrix(X, dtype=dtype)
else:
X = array2d(X, dtype=dtype, order=order)
assert_all_finite(X)
return X
def _num_samples(x):
"""Return number of samples in array-like x."""
if not hasattr(x, '__len__') and not hasattr(x, 'shape'):
raise TypeError("Expected sequence or array-like, got %r" % x)
return x.shape[0] if hasattr(x, 'shape') else len(x)
def check_arrays(*arrays, **options):
"""Checked that all arrays have consistent first dimensions
Parameters
----------
*arrays : sequence of arrays or scipy.sparse matrices with same shape[0]
Python lists or tuples occurring in arrays are converted to 1D numpy
arrays.
sparse_format : 'csr' or 'csc', None by default
If not None, any scipy.sparse matrix is converted to
Compressed Sparse Rows or Compressed Sparse Columns representations.
copy : boolean, False by default
If copy is True, ensure that returned arrays are copies of the original
(if not already converted to another format earlier in the process).
check_ccontiguous : boolean, False by default
Check that the arrays are C contiguous
dtype : a numpy dtype instance, None by default
Enforce a specific dtype.
"""
sparse_format = options.pop('sparse_format', None)
if sparse_format not in (None, 'csr', 'csc'):
raise ValueError('Unexpected sparse format: %r' % sparse_format)
copy = options.pop('copy', False)
check_ccontiguous = options.pop('check_ccontiguous', False)
dtype = options.pop('dtype', None)
if options:
raise TypeError("Unexpected keyword arguments: %r" % options.keys())
if len(arrays) == 0:
return None
n_samples = _num_samples(arrays[0])
checked_arrays = []
for array in arrays:
array_orig = array
if array is None:
# special case: ignore optional y=None kwarg pattern
checked_arrays.append(array)
continue
size = _num_samples(array)
if size != n_samples:
raise ValueError("Found array with dim %d. Expected %d" % (
size, n_samples))
if sp.issparse(array):
if sparse_format == 'csr':
array = array.tocsr()
elif sparse_format == 'csc':
array = array.tocsc()
if check_ccontiguous:
array.data = np.ascontiguousarray(array.data, dtype=dtype)
else:
array.data = np.asarray(array.data, dtype=dtype)
else:
if check_ccontiguous:
array = np.ascontiguousarray(array, dtype=dtype)
else:
array = np.asarray(array, dtype=dtype)
if copy and array is array_orig:
array = array.copy()
checked_arrays.append(array)
return checked_arrays
def warn_if_not_float(X, estimator='This algorithm'):
"""Warning utility function to check that data type is floating point"""
if not isinstance(estimator, basestring):
estimator = estimator.__class__.__name__
if X.dtype.kind != 'f':
warnings.warn("%s assumes floating point values as input, "
"got %s" % (estimator, X.dtype))
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, int):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
|