File: bench_mnist.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (177 lines) | stat: -rw-r--r-- 6,799 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
=======================
MNIST dataset benchmark
=======================

Benchmark on the MNIST dataset.  The dataset comprises 70,000 samples
and 784 features. Here, we consider the task of predicting
10 classes -  digits from 0 to 9 from their raw images. By contrast to the
covertype dataset, the feature space is homogenous.

Example of output :
    [..]

    Classification performance:
    ===========================
    Classifier               train-time   test-time   error-rate
    ------------------------------------------------------------
    MLP_adam                     53.46s       0.11s       0.0224
    Nystroem-SVM                112.97s       0.92s       0.0228
    MultilayerPerceptron         24.33s       0.14s       0.0287
    ExtraTrees                   42.99s       0.57s       0.0294
    RandomForest                 42.70s       0.49s       0.0318
    SampledRBF-SVM              135.81s       0.56s       0.0486
    LinearRegression-SAG         16.67s       0.06s       0.0824
    CART                         20.69s       0.02s       0.1219
    dummy                         0.00s       0.01s       0.8973
"""
from __future__ import division, print_function

# Author: Issam H. Laradji
#         Arnaud Joly <arnaud.v.joly@gmail.com>
# License: BSD 3 clause

import os
from time import time
import argparse
import numpy as np

from sklearn.datasets import fetch_mldata
from sklearn.datasets import get_data_home
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.dummy import DummyClassifier
from sklearn.externals.joblib import Memory
from sklearn.kernel_approximation import Nystroem
from sklearn.kernel_approximation import RBFSampler
from sklearn.metrics import zero_one_loss
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import check_array
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier

# Memoize the data extraction and memory map the resulting
# train / test splits in readonly mode
memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'),
                mmap_mode='r')


@memory.cache
def load_data(dtype=np.float32, order='F'):
    """Load the data, then cache and memmap the train/test split"""
    ######################################################################
    # Load dataset
    print("Loading dataset...")
    data = fetch_mldata('MNIST original')
    X = check_array(data['data'], dtype=dtype, order=order)
    y = data["target"]

    # Normalize features
    X = X / 255

    # Create train-test split (as [Joachims, 2006])
    print("Creating train-test split...")
    n_train = 60000
    X_train = X[:n_train]
    y_train = y[:n_train]
    X_test = X[n_train:]
    y_test = y[n_train:]

    return X_train, X_test, y_train, y_test


ESTIMATORS = {
    "dummy": DummyClassifier(),
    'CART': DecisionTreeClassifier(),
    'ExtraTrees': ExtraTreesClassifier(n_estimators=100),
    'RandomForest': RandomForestClassifier(n_estimators=100),
    'Nystroem-SVM': make_pipeline(
        Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)),
    'SampledRBF-SVM': make_pipeline(
        RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)),
    'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4),
    'MultilayerPerceptron': MLPClassifier(
        hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4,
        algorithm='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1,
        tol=1e-4, random_state=1),
    'MLP-adam': MLPClassifier(
        hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4,
        algorithm='adam', learning_rate_init=0.001, verbose=1,
        tol=1e-4, random_state=1)
}


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--classifiers', nargs="+",
                        choices=ESTIMATORS, type=str,
                        default=['ExtraTrees', 'Nystroem-SVM'],
                        help="list of classifiers to benchmark.")
    parser.add_argument('--n-jobs', nargs="?", default=1, type=int,
                        help="Number of concurrently running workers for "
                             "models that support parallelism.")
    parser.add_argument('--order', nargs="?", default="C", type=str,
                        choices=["F", "C"],
                        help="Allow to choose between fortran and C ordered "
                             "data")
    parser.add_argument('--random-seed', nargs="?", default=0, type=int,
                        help="Common seed used by random number generator.")
    args = vars(parser.parse_args())

    print(__doc__)

    X_train, X_test, y_train, y_test = load_data(order=args["order"])

    print("")
    print("Dataset statistics:")
    print("===================")
    print("%s %d" % ("number of features:".ljust(25), X_train.shape[1]))
    print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size))
    print("%s %s" % ("data type:".ljust(25), X_train.dtype))
    print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25),
                                 X_train.shape[0], int(X_train.nbytes / 1e6)))
    print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25),
                                 X_test.shape[0], int(X_test.nbytes / 1e6)))

    print()
    print("Training Classifiers")
    print("====================")
    error, train_time, test_time = {}, {}, {}
    for name in sorted(args["classifiers"]):
        print("Training %s ... " % name, end="")
        estimator = ESTIMATORS[name]
        estimator_params = estimator.get_params()

        estimator.set_params(**{p: args["random_seed"]
                                for p in estimator_params
                                if p.endswith("random_state")})

        if "n_jobs" in estimator_params:
            estimator.set_params(n_jobs=args["n_jobs"])

        time_start = time()
        estimator.fit(X_train, y_train)
        train_time[name] = time() - time_start

        time_start = time()
        y_pred = estimator.predict(X_test)
        test_time[name] = time() - time_start

        error[name] = zero_one_loss(y_test, y_pred)

        print("done")

    print()
    print("Classification performance:")
    print("===========================")
    print("{0: <24} {1: >10} {2: >11} {3: >12}"
          "".format("Classifier  ", "train-time", "test-time", "error-rate"))
    print("-" * 60)
    for name in sorted(args["classifiers"], key=error.get):

        print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}"
              "".format(name, train_time[name], test_time[name], error[name]))

    print()