File: model_evaluation.rst

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (1551 lines) | stat: -rw-r--r-- 64,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
.. currentmodule:: sklearn

.. _model_evaluation:

========================================================
Model evaluation: quantifying the quality of predictions
========================================================

There are 3 different approaches to evaluate the quality of predictions of a
model:

* **Estimator score method**: Estimators have a ``score`` method providing a
  default evaluation criterion for the problem they are designed to solve.
  This is not discussed on this page, but in each estimator's documentation.

* **Scoring parameter**: Model-evaluation tools using
  :ref:`cross-validation <cross_validation>` (such as
  :func:`model_selection.cross_val_score` and
  :class:`model_selection.GridSearchCV`) rely on an internal *scoring* strategy.
  This is discussed in the section :ref:`scoring_parameter`.

* **Metric functions**: The :mod:`metrics` module implements functions
  assessing prediction error for specific purposes. These metrics are detailed
  in sections on :ref:`classification_metrics`,
  :ref:`multilabel_ranking_metrics`, :ref:`regression_metrics` and
  :ref:`clustering_metrics`.

Finally, :ref:`dummy_estimators` are useful to get a baseline
value of those metrics for random predictions.

.. seealso::

   For "pairwise" metrics, between *samples* and not estimators or
   predictions, see the :ref:`metrics` section.

.. _scoring_parameter:

The ``scoring`` parameter: defining model evaluation rules
==========================================================

Model selection and evaluation using tools, such as
:class:`model_selection.GridSearchCV` and
:func:`model_selection.cross_val_score`, take a ``scoring`` parameter that
controls what metric they apply to the estimators evaluated.

Common cases: predefined values
-------------------------------

For the most common use cases, you can designate a scorer object with the
``scoring`` parameter; the table below shows all possible values.
All scorer objects follow the convention that **higher return values are better
than lower return values**.  Thus metrics which measure the distance between
the model and the data, like :func:`metrics.mean_squared_error`, are
available as neg_mean_squared_error which return the negated value
of the metric.


===========================     =========================================     ==================================
Scoring                         Function                                      Comment
===========================     =========================================     ==================================
**Classification**
'accuracy'                      :func:`metrics.accuracy_score`
'average_precision'             :func:`metrics.average_precision_score`
'f1'                            :func:`metrics.f1_score`                      for binary targets
'f1_micro'                      :func:`metrics.f1_score`                      micro-averaged
'f1_macro'                      :func:`metrics.f1_score`                      macro-averaged
'f1_weighted'                   :func:`metrics.f1_score`                      weighted average
'f1_samples'                    :func:`metrics.f1_score`                      by multilabel sample
'neg_log_loss'                  :func:`metrics.log_loss`                      requires ``predict_proba`` support
'precision' etc.                :func:`metrics.precision_score`               suffixes apply as with 'f1'
'recall' etc.                   :func:`metrics.recall_score`                  suffixes apply as with 'f1'
'roc_auc'                       :func:`metrics.roc_auc_score`

**Clustering**
'adjusted_rand_score'           :func:`metrics.adjusted_rand_score`

**Regression**
'neg_mean_absolute_error'       :func:`metrics.mean_absolute_error`
'neg_mean_squared_error'        :func:`metrics.mean_squared_error`
'neg_median_absolute_error'     :func:`metrics.median_absolute_error`
'r2'                            :func:`metrics.r2_score`
===========================     =========================================     ==================================

Usage examples:

    >>> from sklearn import svm, datasets
    >>> from sklearn.model_selection import cross_val_score
    >>> iris = datasets.load_iris()
    >>> X, y = iris.data, iris.target
    >>> clf = svm.SVC(probability=True, random_state=0)
    >>> cross_val_score(clf, X, y, scoring='neg_log_loss') # doctest: +ELLIPSIS
    array([-0.07..., -0.16..., -0.06...])
    >>> model = svm.SVC()
    >>> cross_val_score(model, X, y, scoring='wrong_choice')
    Traceback (most recent call last):
    ValueError: 'wrong_choice' is not a valid scoring value. Valid options are ['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_median_absolute_error', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc']

.. note::

    The values listed by the ValueError exception correspond to the functions measuring
    prediction accuracy described in the following sections.
    The scorer objects for those functions are stored in the dictionary
    ``sklearn.metrics.SCORERS``.

.. currentmodule:: sklearn.metrics

.. _scoring:

Defining your scoring strategy from metric functions
-----------------------------------------------------

The module :mod:`sklearn.metric` also exposes a set of simple functions
measuring a prediction error given ground truth and prediction:

- functions ending with ``_score`` return a value to
  maximize, the higher the better.

- functions ending with ``_error`` or ``_loss`` return a
  value to minimize, the lower the better.  When converting
  into a scorer object using :func:`make_scorer`, set
  the ``greater_is_better`` parameter to False (True by default; see the
  parameter description below).

Metrics available for various machine learning tasks are detailed in sections
below.

Many metrics are not given names to be used as ``scoring`` values,
sometimes because they require additional parameters, such as
:func:`fbeta_score`. In such cases, you need to generate an appropriate
scoring object.  The simplest way to generate a callable object for scoring
is by using :func:`make_scorer`. That function converts metrics
into callables that can be used for model evaluation.

One typical use case is to wrap an existing metric function from the library
with non-default values for its parameters, such as the ``beta`` parameter for
the :func:`fbeta_score` function::

    >>> from sklearn.metrics import fbeta_score, make_scorer
    >>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
    >>> from sklearn.model_selection import GridSearchCV
    >>> from sklearn.svm import LinearSVC
    >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, scoring=ftwo_scorer)

The second use case is to build a completely custom scorer object
from a simple python function using :func:`make_scorer`, which can
take several parameters:

* the python function you want to use (``my_custom_loss_func``
  in the example below)

* whether the python function returns a score (``greater_is_better=True``,
  the default) or a loss (``greater_is_better=False``).  If a loss, the output
  of the python function is negated by the scorer object, conforming to
  the cross validation convention that scorers return higher values for better models.

* for classification metrics only: whether the python function you provided requires continuous decision
  certainties (``needs_threshold=True``).  The default value is
  False.

* any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`.

Here is an example of building custom scorers, and of using the
``greater_is_better`` parameter::

    >>> import numpy as np
    >>> def my_custom_loss_func(ground_truth, predictions):
    ...     diff = np.abs(ground_truth - predictions).max()
    ...     return np.log(1 + diff)
    ...
    >>> # loss_func will negate the return value of my_custom_loss_func,
    >>> #  which will be np.log(2), 0.693, given the values for ground_truth
    >>> #  and predictions defined below.
    >>> loss  = make_scorer(my_custom_loss_func, greater_is_better=False)
    >>> score = make_scorer(my_custom_loss_func, greater_is_better=True)
    >>> ground_truth = [[1, 1]]
    >>> predictions  = [0, 1]
    >>> from sklearn.dummy import DummyClassifier
    >>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
    >>> clf = clf.fit(ground_truth, predictions)
    >>> loss(clf,ground_truth, predictions) # doctest: +ELLIPSIS
    -0.69...
    >>> score(clf,ground_truth, predictions) # doctest: +ELLIPSIS
    0.69...


.. _diy_scoring:

Implementing your own scoring object
------------------------------------
You can generate even more flexible model scorers by constructing your own
scoring object from scratch, without using the :func:`make_scorer` factory.
For a callable to be a scorer, it needs to meet the protocol specified by
the following two rules:

- It can be called with parameters ``(estimator, X, y)``, where ``estimator``
  is the model that should be evaluated, ``X`` is validation data, and ``y`` is
  the ground truth target for ``X`` (in the supervised case) or ``None`` (in the
  unsupervised case).

- It returns a floating point number that quantifies the
  ``estimator`` prediction quality on ``X``, with reference to ``y``.
  Again, by convention higher numbers are better, so if your scorer
  returns loss, that value should be negated.


.. _classification_metrics:

Classification metrics
=======================

.. currentmodule:: sklearn.metrics

The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure classification performance.
Some metrics might require probability estimates of the positive class,
confidence values, or binary decisions values.
Most implementations allow each sample to provide a weighted contribution
to the overall score, through the ``sample_weight`` parameter.

Some of these are restricted to the binary classification case:

.. autosummary::
   :template: function.rst

   matthews_corrcoef
   precision_recall_curve
   roc_curve


Others also work in the multiclass case:

.. autosummary::
   :template: function.rst

   cohen_kappa_score
   confusion_matrix
   hinge_loss


Some also work in the multilabel case:

.. autosummary::
   :template: function.rst

   accuracy_score
   classification_report
   f1_score
   fbeta_score
   hamming_loss
   jaccard_similarity_score
   log_loss
   precision_recall_fscore_support
   precision_score
   recall_score
   zero_one_loss

And some work with binary and multilabel (but not multiclass) problems:

.. autosummary::
   :template: function.rst

   average_precision_score
   roc_auc_score


In the following sub-sections, we will describe each of those functions,
preceded by some notes on common API and metric definition.

From binary to multiclass and multilabel
----------------------------------------

Some metrics are essentially defined for binary classification tasks (e.g.
:func:`f1_score`, :func:`roc_auc_score`). In these cases, by default
only the positive label is evaluated, assuming by default that the positive
class is labelled ``1`` (though this may be configurable through the
``pos_label`` parameter).

.. _average:

In extending a binary metric to multiclass or multilabel problems, the data
is treated as a collection of binary problems, one for each class.
There are then a number of ways to average binary metric calculations across
the set of classes, each of which may be useful in some scenario.
Where available, you should select among these using the ``average`` parameter.

* ``"macro"`` simply calculates the mean of the binary metrics,
  giving equal weight to each class.  In problems where infrequent classes
  are nonetheless important, macro-averaging may be a means of highlighting
  their performance. On the other hand, the assumption that all classes are
  equally important is often untrue, such that macro-averaging will
  over-emphasize the typically low performance on an infrequent class.
* ``"weighted"`` accounts for class imbalance by computing the average of
  binary metrics in which each class's score is weighted by its presence in the
  true data sample.
* ``"micro"`` gives each sample-class pair an equal contribution to the overall
  metric (except as a result of sample-weight). Rather than summing the
  metric per class, this sums the dividends and divisors that make up the
  per-class metrics to calculate an overall quotient.
  Micro-averaging may be preferred in multilabel settings, including
  multiclass classification where a majority class is to be ignored.
* ``"samples"`` applies only to multilabel problems. It does not calculate a
  per-class measure, instead calculating the metric over the true and predicted
  classes for each sample in the evaluation data, and returning their
  (``sample_weight``-weighted) average.
* Selecting ``average=None`` will return an array with the score for each
  class.

While multiclass data is provided to the metric, like binary targets, as an
array of class labels, multilabel data is specified as an indicator matrix,
in which cell ``[i, j]`` has value 1 if sample ``i`` has label ``j`` and value
0 otherwise.

.. _accuracy_score:

Accuracy score
--------------

The :func:`accuracy_score` function computes the
`accuracy <https://en.wikipedia.org/wiki/Accuracy_and_precision>`_, either the fraction
(default) or the count (normalize=False) of correct predictions.


In multilabel classification, the function returns the subset accuracy. If
the entire set of predicted labels for a sample strictly match with the true
set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.

If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the fraction of correct predictions over :math:`n_\text{samples}` is
defined as

.. math::

   \texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)

where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.

  >>> import numpy as np
  >>> from sklearn.metrics import accuracy_score
  >>> y_pred = [0, 2, 1, 3]
  >>> y_true = [0, 1, 2, 3]
  >>> accuracy_score(y_true, y_pred)
  0.5
  >>> accuracy_score(y_true, y_pred, normalize=False)
  2

In the multilabel case with binary label indicators: ::

  >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
  0.5

.. topic:: Example:

  * See :ref:`sphx_glr_auto_examples_feature_selection_plot_permutation_test_for_classification.py`
    for an example of accuracy score usage using permutations of
    the dataset.

.. _cohen_kappa:

Cohen's kappa
-------------

The function :func:`cohen_kappa_score` computes `Cohen's kappa
<https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ statistic.
This measure is intended to compare labelings by different human annotators,
not a classifier versus a ground truth.

The kappa score (see docstring) is a number between -1 and 1.
Scores above .8 are generally considered good agreement;
zero or lower means no agreement (practically random labels).

Kappa scores can be computed for binary or multiclass problems,
but not for multilabel problems (except by manually computing a per-label score)
and not for more than two annotators.

  >>> from sklearn.metrics import cohen_kappa_score
  >>> y_true = [2, 0, 2, 2, 0, 1]
  >>> y_pred = [0, 0, 2, 2, 0, 2]
  >>> cohen_kappa_score(y_true, y_pred)
  0.4285714285714286

.. _confusion_matrix:

Confusion matrix
----------------

The :func:`confusion_matrix` function evaluates
classification accuracy by computing the `confusion matrix
<https://en.wikipedia.org/wiki/Confusion_matrix>`_.

By definition, entry :math:`i, j` in a confusion matrix is
the number of observations actually in group :math:`i`, but
predicted to be in group :math:`j`. Here is an example::

  >>> from sklearn.metrics import confusion_matrix
  >>> y_true = [2, 0, 2, 2, 0, 1]
  >>> y_pred = [0, 0, 2, 2, 0, 2]
  >>> confusion_matrix(y_true, y_pred)
  array([[2, 0, 0],
         [0, 0, 1],
         [1, 0, 2]])

Here is a visual representation of such a confusion matrix (this figure comes
from the :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py` example):

.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_confusion_matrix_001.png
   :target: ../auto_examples/model_selection/plot_confusion_matrix.html
   :scale: 75
   :align: center

For binary problems, we can get counts of true negatives, false positives,
false negatives and true positives as follows::

  >>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
  >>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
  >>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
  >>> tn, fp, fn, tp
  (2, 1, 2, 3)

.. topic:: Example:

  * See :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
    for an example of using a confusion matrix to evaluate classifier output
    quality.

  * See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
    for an example of using a confusion matrix to classify
    hand-written digits.

  * See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
    for an example of using a confusion matrix to classify text
    documents.

.. _classification_report:

Classification report
----------------------

The :func:`classification_report` function builds a text report showing the
main classification metrics. Here is a small example with custom ``target_names``
and inferred labels::

   >>> from sklearn.metrics import classification_report
   >>> y_true = [0, 1, 2, 2, 0]
   >>> y_pred = [0, 0, 2, 2, 0]
   >>> target_names = ['class 0', 'class 1', 'class 2']
   >>> print(classification_report(y_true, y_pred, target_names=target_names))
                precision    recall  f1-score   support
   <BLANKLINE>
       class 0       0.67      1.00      0.80         2
       class 1       0.00      0.00      0.00         1
       class 2       1.00      1.00      1.00         2
   <BLANKLINE>
   avg / total       0.67      0.80      0.72         5
   <BLANKLINE>

.. topic:: Example:

  * See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
    for an example of classification report usage for
    hand-written digits.

  * See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
    for an example of classification report usage for text
    documents.

  * See :ref:`sphx_glr_auto_examples_model_selection_grid_search_digits.py`
    for an example of classification report usage for
    grid search with nested cross-validation.

.. _hamming_loss:

Hamming loss
-------------

The :func:`hamming_loss` computes the average Hamming loss or `Hamming
distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ between two sets
of samples.

If :math:`\hat{y}_j` is the predicted value for the :math:`j`-th label of
a given sample, :math:`y_j` is the corresponding true value, and
:math:`n_\text{labels}` is the number of classes or labels, then the
Hamming loss :math:`L_{Hamming}` between two samples is defined as:

.. math::

   L_{Hamming}(y, \hat{y}) = \frac{1}{n_\text{labels}} \sum_{j=0}^{n_\text{labels} - 1} 1(\hat{y}_j \not= y_j)

where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_. ::

  >>> from sklearn.metrics import hamming_loss
  >>> y_pred = [1, 2, 3, 4]
  >>> y_true = [2, 2, 3, 4]
  >>> hamming_loss(y_true, y_pred)
  0.25

In the multilabel case with binary label indicators: ::

  >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
  0.75

.. note::

    In multiclass classification, the Hamming loss corresponds to the Hamming
    distance between ``y_true`` and ``y_pred`` which is similar to the
    :ref:`zero_one_loss` function.  However, while zero-one loss penalizes
    prediction sets that do not strictly match true sets, the Hamming loss
    penalizes individual labels.  Thus the Hamming loss, upper bounded by the zero-one
    loss, is always between zero and one, inclusive; and predicting a proper subset
    or superset of the true labels will give a Hamming loss between
    zero and one, exclusive.

.. _jaccard_similarity_score:

Jaccard similarity coefficient score
-------------------------------------

The :func:`jaccard_similarity_score` function computes the average (default)
or sum of `Jaccard similarity coefficients
<https://en.wikipedia.org/wiki/Jaccard_index>`_, also called the Jaccard index,
between pairs of label sets.

The Jaccard similarity coefficient of the :math:`i`-th samples,
with a ground truth label set :math:`y_i` and predicted label set
:math:`\hat{y}_i`, is defined as

.. math::

    J(y_i, \hat{y}_i) = \frac{|y_i \cap \hat{y}_i|}{|y_i \cup \hat{y}_i|}.

In binary and multiclass classification, the Jaccard similarity coefficient
score is equal to the classification accuracy.

::

  >>> import numpy as np
  >>> from sklearn.metrics import jaccard_similarity_score
  >>> y_pred = [0, 2, 1, 3]
  >>> y_true = [0, 1, 2, 3]
  >>> jaccard_similarity_score(y_true, y_pred)
  0.5
  >>> jaccard_similarity_score(y_true, y_pred, normalize=False)
  2

In the multilabel case with binary label indicators: ::

  >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
  0.75

.. _precision_recall_f_measure_metrics:

Precision, recall and F-measures
---------------------------------

Intuitively, `precision
<https://en.wikipedia.org/wiki/Precision_and_recall#Precision>`_ is the ability
of the classifier not to label as positive a sample that is negative, and
`recall <https://en.wikipedia.org/wiki/Precision_and_recall#Recall>`_ is the
ability of the classifier to find all the positive samples.

The  `F-measure <https://en.wikipedia.org/wiki/F1_score>`_
(:math:`F_\beta` and :math:`F_1` measures) can be interpreted as a weighted
harmonic mean of the precision and recall. A
:math:`F_\beta` measure reaches its best value at 1 and its worst score at 0.
With :math:`\beta = 1`,  :math:`F_\beta` and
:math:`F_1`  are equivalent, and the recall and the precision are equally important.

The :func:`precision_recall_curve` computes a precision-recall curve
from the ground truth label and a score given by the classifier
by varying a decision threshold.

The :func:`average_precision_score` function computes the average precision
(AP) from prediction scores. This score corresponds to the area under the
precision-recall curve. The value is between 0 and 1 and higher is better.
With random predictions, the AP is the fraction of positive samples.

Several functions allow you to analyze the precision, recall and F-measures
score:

.. autosummary::
   :template: function.rst

   average_precision_score
   f1_score
   fbeta_score
   precision_recall_curve
   precision_recall_fscore_support
   precision_score
   recall_score

Note that the :func:`precision_recall_curve` function is restricted to the
binary case. The :func:`average_precision_score` function works only in
binary classification and multilabel indicator format.


.. topic:: Examples:

  * See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
    for an example of :func:`f1_score` usage to classify  text
    documents.

  * See :ref:`sphx_glr_auto_examples_model_selection_grid_search_digits.py`
    for an example of :func:`precision_score` and :func:`recall_score` usage
    to estimate parameters using grid search with nested cross-validation.

  * See :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py`
    for an example of :func:`precision_recall_curve` usage to evaluate
    classifier output quality.

  * See :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_recovery.py`
    for an example of :func:`precision_recall_curve` usage to select
    features for sparse linear models.

Binary classification
^^^^^^^^^^^^^^^^^^^^^

In a binary classification task, the terms ''positive'' and ''negative'' refer
to the classifier's prediction, and the terms ''true'' and ''false'' refer to
whether that prediction corresponds to the external judgment (sometimes known
as the ''observation''). Given these definitions, we can formulate the
following table:

+-------------------+------------------------------------------------+
|                   |    Actual class (observation)                  |
+-------------------+---------------------+--------------------------+
|   Predicted class | tp (true positive)  | fp (false positive)      |
|   (expectation)   | Correct result      | Unexpected result        |
|                   +---------------------+--------------------------+
|                   | fn (false negative) | tn (true negative)       |
|                   | Missing result      | Correct absence of result|
+-------------------+---------------------+--------------------------+

In this context, we can define the notions of precision, recall and F-measure:

.. math::

   \text{precision} = \frac{tp}{tp + fp},

.. math::

   \text{recall} = \frac{tp}{tp + fn},

.. math::

   F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}.

Here are some small examples in binary classification::

  >>> from sklearn import metrics
  >>> y_pred = [0, 1, 0, 0]
  >>> y_true = [0, 1, 0, 1]
  >>> metrics.precision_score(y_true, y_pred)
  1.0
  >>> metrics.recall_score(y_true, y_pred)
  0.5
  >>> metrics.f1_score(y_true, y_pred)  # doctest: +ELLIPSIS
  0.66...
  >>> metrics.fbeta_score(y_true, y_pred, beta=0.5)  # doctest: +ELLIPSIS
  0.83...
  >>> metrics.fbeta_score(y_true, y_pred, beta=1)  # doctest: +ELLIPSIS
  0.66...
  >>> metrics.fbeta_score(y_true, y_pred, beta=2) # doctest: +ELLIPSIS
  0.55...
  >>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)  # doctest: +ELLIPSIS
  (array([ 0.66...,  1.        ]), array([ 1. ,  0.5]), array([ 0.71...,  0.83...]), array([2, 2]...))


  >>> import numpy as np
  >>> from sklearn.metrics import precision_recall_curve
  >>> from sklearn.metrics import average_precision_score
  >>> y_true = np.array([0, 0, 1, 1])
  >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
  >>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
  >>> precision  # doctest: +ELLIPSIS
  array([ 0.66...,  0.5       ,  1.        ,  1.        ])
  >>> recall
  array([ 1. ,  0.5,  0.5,  0. ])
  >>> threshold
  array([ 0.35,  0.4 ,  0.8 ])
  >>> average_precision_score(y_true, y_scores)  # doctest: +ELLIPSIS
  0.79...



Multiclass and multilabel classification
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In multiclass and multilabel classification task, the notions of precision,
recall, and F-measures can be applied to each label independently.
There are a few ways to combine results across labels,
specified by the ``average`` argument to the
:func:`average_precision_score` (multilabel only), :func:`f1_score`,
:func:`fbeta_score`, :func:`precision_recall_fscore_support`,
:func:`precision_score` and :func:`recall_score` functions, as described
:ref:`above <average>`. Note that for "micro"-averaging in a multiclass setting
with all labels included will produce equal precision, recall and :math:`F`,
while "weighted" averaging may produce an F-score that is not between
precision and recall.

To make this more explicit, consider the following notation:

* :math:`y` the set of *predicted* :math:`(sample, label)` pairs
* :math:`\hat{y}` the set of *true* :math:`(sample, label)` pairs
* :math:`L` the set of labels
* :math:`S` the set of samples
* :math:`y_s` the subset of :math:`y` with sample :math:`s`,
  i.e. :math:`y_s := \left\{(s', l) \in y | s' = s\right\}`
* :math:`y_l` the subset of :math:`y` with label :math:`l`
* similarly, :math:`\hat{y}_s` and :math:`\hat{y}_l` are subsets of
  :math:`\hat{y}`
* :math:`P(A, B) := \frac{\left| A \cap B \right|}{\left|A\right|}`
* :math:`R(A, B) := \frac{\left| A \cap B \right|}{\left|B\right|}`
  (Conventions vary on handling :math:`B = \emptyset`; this implementation uses
  :math:`R(A, B):=0`, and similar for :math:`P`.)
* :math:`F_\beta(A, B) := \left(1 + \beta^2\right) \frac{P(A, B) \times R(A, B)}{\beta^2 P(A, B) + R(A, B)}`

Then the metrics are defined as:

+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``average``    | Precision                                                                                                        | Recall                                                                                                           | F\_beta                                                                                                              |
+===============+==================================================================================================================+==================================================================================================================+======================================================================================================================+
|``"micro"``    | :math:`P(y, \hat{y})`                                                                                            | :math:`R(y, \hat{y})`                                                                                            | :math:`F_\beta(y, \hat{y})`                                                                                          |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"samples"``  | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} P(y_s, \hat{y}_s)`                                                | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} R(y_s, \hat{y}_s)`                                                | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} F_\beta(y_s, \hat{y}_s)`                                              |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"macro"``    | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} P(y_l, \hat{y}_l)`                                                | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} R(y_l, \hat{y}_l)`                                                | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} F_\beta(y_l, \hat{y}_l)`                                              |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"weighted"`` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| P(y_l, \hat{y}_l)`  | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| R(y_l, \hat{y}_l)`  | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| F_\beta(y_l, \hat{y}_l)`|
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``None``       | :math:`\langle P(y_l, \hat{y}_l) | l \in L \rangle`                                                              | :math:`\langle R(y_l, \hat{y}_l) | l \in L \rangle`                                                              | :math:`\langle F_\beta(y_l, \hat{y}_l) | l \in L \rangle`                                                            |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+

  >>> from sklearn import metrics
  >>> y_true = [0, 1, 2, 0, 1, 2]
  >>> y_pred = [0, 2, 1, 0, 0, 1]
  >>> metrics.precision_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
  0.22...
  >>> metrics.recall_score(y_true, y_pred, average='micro')
  ... # doctest: +ELLIPSIS
  0.33...
  >>> metrics.f1_score(y_true, y_pred, average='weighted')  # doctest: +ELLIPSIS
  0.26...
  >>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)  # doctest: +ELLIPSIS
  0.23...
  >>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
  ... # doctest: +ELLIPSIS
  (array([ 0.66...,  0.        ,  0.        ]), array([ 1.,  0.,  0.]), array([ 0.71...,  0.        ,  0.        ]), array([2, 2, 2]...))

For multiclass classification with a "negative class", it is possible to exclude some labels:

  >>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
  ... # excluding 0, no labels were correctly recalled
  0.0

Similarly, labels not present in the data sample may be accounted for in macro-averaging.

  >>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
  ... # doctest: +ELLIPSIS
  0.166...

.. _hinge_loss:

Hinge loss
----------

The :func:`hinge_loss` function computes the average distance between
the model and the data using
`hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_, a one-sided metric
that considers only prediction errors. (Hinge
loss is used in maximal margin classifiers such as support vector machines.)

If the labels are encoded with +1 and -1,  :math:`y`: is the true
value, and :math:`w` is the predicted decisions as output by
``decision_function``, then the hinge loss is defined as:

.. math::

  L_\text{Hinge}(y, w) = \max\left\{1 - wy, 0\right\} = \left|1 - wy\right|_+

If there are more than two labels, :func:`hinge_loss` uses a multiclass variant
due to Crammer & Singer.
`Here <http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf>`_ is
the paper describing it.

If :math:`y_w` is the predicted decision for true label and :math:`y_t` is the
maximum of the predicted decisions for all other labels, where predicted
decisions are output by decision function, then multiclass hinge loss is defined
by:

.. math::

  L_\text{Hinge}(y_w, y_t) = \max\left\{1 + y_t - y_w, 0\right\}

Here a small example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a binary class problem::

  >>> from sklearn import svm
  >>> from sklearn.metrics import hinge_loss
  >>> X = [[0], [1]]
  >>> y = [-1, 1]
  >>> est = svm.LinearSVC(random_state=0)
  >>> est.fit(X, y)
  LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
       intercept_scaling=1, loss='squared_hinge', max_iter=1000,
       multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
       verbose=0)
  >>> pred_decision = est.decision_function([[-2], [3], [0.5]])
  >>> pred_decision  # doctest: +ELLIPSIS
  array([-2.18...,  2.36...,  0.09...])
  >>> hinge_loss([-1, 1, 1], pred_decision)  # doctest: +ELLIPSIS
  0.3...

Here is an example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a multiclass problem::

  >>> X = np.array([[0], [1], [2], [3]])
  >>> Y = np.array([0, 1, 2, 3])
  >>> labels = np.array([0, 1, 2, 3])
  >>> est = svm.LinearSVC()
  >>> est.fit(X, Y)
  LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
       intercept_scaling=1, loss='squared_hinge', max_iter=1000,
       multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
       verbose=0)
  >>> pred_decision = est.decision_function([[-1], [2], [3]])
  >>> y_true = [0, 2, 3]
  >>> hinge_loss(y_true, pred_decision, labels)  #doctest: +ELLIPSIS
  0.56...

.. _log_loss:

Log loss
--------

Log loss, also called logistic regression loss or
cross-entropy loss, is defined on probability estimates.  It is
commonly used in (multinomial) logistic regression and neural networks, as well
as in some variants of expectation-maximization, and can be used to evaluate the
probability outputs (``predict_proba``) of a classifier instead of its
discrete predictions.

For binary classification with a true label :math:`y \in \{0,1\}`
and a probability estimate :math:`p = \operatorname{Pr}(y = 1)`,
the log loss per sample is the negative log-likelihood
of the classifier given the true label:

.. math::

    L_{\log}(y, p) = -\log \operatorname{Pr}(y|p) = -(y \log (p) + (1 - y) \log (1 - p))

This extends to the multiclass case as follows.
Let the true labels for a set of samples
be encoded as a 1-of-K binary indicator matrix :math:`Y`,
i.e., :math:`y_{i,k} = 1` if sample :math:`i` has label :math:`k`
taken from a set of :math:`K` labels.
Let :math:`P` be a matrix of probability estimates,
with :math:`p_{i,k} = \operatorname{Pr}(t_{i,k} = 1)`.
Then the log loss of the whole set is

.. math::

    L_{\log}(Y, P) = -\log \operatorname{Pr}(Y|P) = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}

To see how this generalizes the binary log loss given above,
note that in the binary case,
:math:`p_{i,0} = 1 - p_{i,1}` and :math:`y_{i,0} = 1 - y_{i,1}`,
so expanding the inner sum over :math:`y_{i,k} \in \{0,1\}`
gives the binary log loss.

The :func:`log_loss` function computes log loss given a list of ground-truth
labels and a probability matrix, as returned by an estimator's ``predict_proba``
method.

    >>> from sklearn.metrics import log_loss
    >>> y_true = [0, 0, 1, 1]
    >>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
    >>> log_loss(y_true, y_pred)    # doctest: +ELLIPSIS
    0.1738...

The first ``[.9, .1]`` in ``y_pred`` denotes 90% probability that the first
sample has label 0.  The log loss is non-negative.

.. _matthews_corrcoef:

Matthews correlation coefficient
---------------------------------

The :func:`matthews_corrcoef` function computes the
`Matthew's correlation coefficient (MCC) <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_
for binary classes.  Quoting Wikipedia:


    "The Matthews correlation coefficient is used in machine learning as a
    measure of the quality of binary (two-class) classifications. It takes
    into account true and false positives and negatives and is generally
    regarded as a balanced measure which can be used even if the classes are
    of very different sizes. The MCC is in essence a correlation coefficient
    value between -1 and +1. A coefficient of +1 represents a perfect
    prediction, 0 an average random prediction and -1 an inverse prediction.
    The statistic is also known as the phi coefficient."

If :math:`tp`, :math:`tn`, :math:`fp` and :math:`fn` are respectively the
number of true positives, true negatives, false positives and false negatives,
the MCC coefficient is defined as

.. math::

  MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.

Here is a small example illustrating the usage of the :func:`matthews_corrcoef`
function:

    >>> from sklearn.metrics import matthews_corrcoef
    >>> y_true = [+1, +1, +1, -1]
    >>> y_pred = [+1, -1, +1, +1]
    >>> matthews_corrcoef(y_true, y_pred)  # doctest: +ELLIPSIS
    -0.33...

.. _roc_metrics:

Receiver operating characteristic (ROC)
---------------------------------------

The function :func:`roc_curve` computes the
`receiver operating characteristic curve, or ROC curve <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_.
Quoting Wikipedia :

  "A receiver operating characteristic (ROC), or simply ROC curve, is a
  graphical plot which illustrates the performance of a binary classifier
  system as its discrimination threshold is varied. It is created by plotting
  the fraction of true positives out of the positives (TPR = true positive
  rate) vs. the fraction of false positives out of the negatives (FPR = false
  positive rate), at various threshold settings. TPR is also known as
  sensitivity, and FPR is one minus the specificity or true negative rate."

This function requires the true binary
value and the target scores, which can either be probability estimates of the
positive class, confidence values, or binary decisions.
Here is a small example of how to use the :func:`roc_curve` function::

    >>> import numpy as np
    >>> from sklearn.metrics import roc_curve
    >>> y = np.array([1, 1, 2, 2])
    >>> scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
    >>> fpr
    array([ 0. ,  0.5,  0.5,  1. ])
    >>> tpr
    array([ 0.5,  0.5,  1. ,  1. ])
    >>> thresholds
    array([ 0.8 ,  0.4 ,  0.35,  0.1 ])

This figure shows an example of such an ROC curve:

.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_001.png
   :target: ../auto_examples/model_selection/plot_roc.html
   :scale: 75
   :align: center

The :func:`roc_auc_score` function computes the area under the receiver
operating characteristic (ROC) curve, which is also denoted by
AUC or AUROC.  By computing the
area under the roc curve, the curve information is summarized in one number.
For more information see the `Wikipedia article on AUC
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.

  >>> import numpy as np
  >>> from sklearn.metrics import roc_auc_score
  >>> y_true = np.array([0, 0, 1, 1])
  >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
  >>> roc_auc_score(y_true, y_scores)
  0.75

In multi-label classification, the :func:`roc_auc_score` function is
extended by averaging over the labels as :ref:`above <average>`.

Compared to metrics such as the subset accuracy, the Hamming loss, or the
F1 score, ROC doesn't require optimizing a threshold for each label. The
:func:`roc_auc_score` function can also be used in multi-class classification,
if the predicted outputs have been binarized.


.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_002.png
   :target: ../auto_examples/model_selection/plot_roc.html
   :scale: 75
   :align: center

.. topic:: Examples:

  * See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`
    for an example of using ROC to
    evaluate the quality of the output of a classifier.

  * See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`
    for an example of using ROC to
    evaluate classifier output quality, using cross-validation.

  * See :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
    for an example of using ROC to
    model species distribution.

.. _zero_one_loss:

Zero one loss
--------------

The :func:`zero_one_loss` function computes the sum or the average of the 0-1
classification loss (:math:`L_{0-1}`) over :math:`n_{\text{samples}}`. By
default, the function normalizes over the sample. To get the sum of the
:math:`L_{0-1}`, set ``normalize`` to ``False``.

In multilabel classification, the :func:`zero_one_loss` scores a subset as
one if its labels strictly match the predictions, and as a zero if there
are any errors.  By default, the function returns the percentage of imperfectly
predicted subsets.  To get the count of such subsets instead, set
``normalize`` to ``False``

If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the 0-1 loss :math:`L_{0-1}` is defined as:

.. math::

   L_{0-1}(y_i, \hat{y}_i) = 1(\hat{y}_i \not= y_i)

where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.


  >>> from sklearn.metrics import zero_one_loss
  >>> y_pred = [1, 2, 3, 4]
  >>> y_true = [2, 2, 3, 4]
  >>> zero_one_loss(y_true, y_pred)
  0.25
  >>> zero_one_loss(y_true, y_pred, normalize=False)
  1

In the multilabel case with binary label indicators, where the first label
set [0,1] has an error: ::

  >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
  0.5

  >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)),  normalize=False)
  1

.. topic:: Example:

  * See :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`
    for an example of zero one loss usage to perform recursive feature
    elimination with cross-validation.

.. _brier_score_loss:

Brier score loss
----------------

The :func:`brier_score_loss` function computes the
`Brier score <https://en.wikipedia.org/wiki/Brier_score>`_
for binary classes. Quoting Wikipedia:

    "The Brier score is a proper score function that measures the accuracy of
    probabilistic predictions. It is applicable to tasks in which predictions
    must assign probabilities to a set of mutually exclusive discrete outcomes."

This function returns a score of the mean square difference between the actual
outcome and the predicted probability of the possible outcome. The actual
outcome has to be 1 or 0 (true or false), while the predicted probability of
the actual outcome can be a value between 0 and 1.

The brier score loss is also between 0 to 1 and the lower the score (the mean
square difference is smaller), the more accurate the prediction is. It can be
thought of as a measure of the "calibration" of a set of probabilistic
predictions.

.. math::

   BS = \frac{1}{N} \sum_{t=1}^{N}(f_t - o_t)^2

where : :math:`N` is the total number of predictions, :math:`f_t` is the
predicted probablity of the actual outcome :math:`o_t`.

Here is a small example of usage of this function:::

    >>> import numpy as np
    >>> from sklearn.metrics import brier_score_loss
    >>> y_true = np.array([0, 1, 1, 0])
    >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
    >>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
    >>> y_pred = np.array([0, 1, 1, 0])
    >>> brier_score_loss(y_true, y_prob)
    0.055
    >>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
    0.055
    >>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
    0.055
    >>> brier_score_loss(y_true, y_prob > 0.5)
    0.0


.. topic:: Example:

  * See :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py`
    for an example of Brier score loss usage to perform probability
    calibration of classifiers.

.. topic:: References:

  * G. Brier, `Verification of forecasts expressed in terms of probability
    <http://docs.lib.noaa.gov/rescue/mwr/078/mwr-078-01-0001.pdf>`_,
    Monthly weather review 78.1 (1950)

.. _multilabel_ranking_metrics:

Multilabel ranking metrics
==========================

.. currentmodule:: sklearn.metrics

In multilabel learning, each sample can have any number of ground truth labels
associated with it. The goal is to give high scores and better rank to
the ground truth labels.

.. _coverage_error:

Coverage error
--------------

The :func:`coverage_error` function computes the average number of labels that
have to be included in the final prediction such that all true labels
are predicted. This is useful if you want to know how many top-scored-labels
you have to predict in average without missing any true one. The best value
of this metrics is thus the average number of true labels.

Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the coverage is defined as

.. math::
  coverage(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
    \sum_{i=0}^{n_{\text{samples}} - 1} \max_{j:y_{ij} = 1} \text{rank}_{ij}

with :math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`.
Given the rank definition, ties in ``y_scores`` are broken by giving the
maximal rank that would have been assigned to all tied values.

Here is a small example of usage of this function::

    >>> import numpy as np
    >>> from sklearn.metrics import coverage_error
    >>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
    >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
    >>> coverage_error(y_true, y_score)
    2.5

.. _label_ranking_average_precision:

Label ranking average precision
-------------------------------

The :func:`label_ranking_average_precision_score` function
implements label ranking average precision (LRAP). This metric is linked to
the :func:`average_precision_score` function, but is based on the notion of
label ranking instead of precision and recall.

Label ranking average precision (LRAP) is the average over each ground truth
label assigned to each sample, of the ratio of true vs. total labels with lower
score. This metric will yield better scores if you are able to give better rank
to the labels associated with each sample. The obtained score is always strictly
greater than 0, and the best value is 1. If there is exactly one relevant
label per sample, label ranking average precision is equivalent to the `mean
reciprocal rank <https://en.wikipedia.org/wiki/Mean_reciprocal_rank>`_.

Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}}`,
the average precision is defined as

.. math::
  LRAP(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
    \sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|}
    \sum_{j:y_{ij} = 1} \frac{|\mathcal{L}_{ij}|}{\text{rank}_{ij}}


with :math:`\mathcal{L}_{ij} = \left\{k: y_{ik} = 1, \hat{f}_{ik} \geq \hat{f}_{ij} \right\}`,
:math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`
and :math:`|\cdot|` is the l0 norm or the cardinality of the set.

Here is a small example of usage of this function::

    >>> import numpy as np
    >>> from sklearn.metrics import label_ranking_average_precision_score
    >>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
    >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
    >>> label_ranking_average_precision_score(y_true, y_score) # doctest: +ELLIPSIS
    0.416...

.. _label_ranking_loss:

Ranking loss
------------

The :func:`label_ranking_loss` function computes the ranking loss which
averages over the samples the number of label pairs that are incorrectly
ordered, i.e. true labels have a lower score than false labels, weighted by
the inverse number of false and true labels. The lowest achievable
ranking loss is zero.

Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the ranking loss is defined as

.. math::
  \text{ranking\_loss}(y, \hat{f}) =  \frac{1}{n_{\text{samples}}}
    \sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|(n_\text{labels} - |y_i|)}
    \left|\left\{(k, l): \hat{f}_{ik} < \hat{f}_{il}, y_{ik} = 1, y_{il} = 0 \right\}\right|

where :math:`|\cdot|` is the :math:`\ell_0` norm or the cardinality of the set.

Here is a small example of usage of this function::

    >>> import numpy as np
    >>> from sklearn.metrics import label_ranking_loss
    >>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
    >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
    >>> label_ranking_loss(y_true, y_score) # doctest: +ELLIPSIS
    0.75...
    >>> # With the following prediction, we have perfect and minimal loss
    >>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
    >>> label_ranking_loss(y_true, y_score)
    0.0

.. _regression_metrics:

Regression metrics
===================

.. currentmodule:: sklearn.metrics

The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
:func:`mean_absolute_error`, :func:`explained_variance_score` and
:func:`r2_score`.


These functions have an ``multioutput`` keyword argument which specifies the
way the scores or losses for each individual target should be averaged. The
default is ``'uniform_average'``, which specifies a uniformly weighted mean
over outputs. If an ``ndarray`` of shape ``(n_outputs,)`` is passed, then its
entries are interpreted as weights and an according weighted average is
returned. If ``multioutput`` is ``'raw_values'`` is specified, then all
unaltered individual scores or losses will be returned in an array of shape
``(n_outputs,)``.


The :func:`r2_score` and :func:`explained_variance_score` accept an additional
value ``'variance_weighted'`` for the ``multioutput`` parameter. This option
leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured
unscaled variance. If the target variables are of different scale, then this
score puts more importance on well explaining the higher variance variables.
``multioutput='variance_weighted'`` is the default value for :func:`r2_score`
for backward compatibility. This will be changed to ``uniform_average`` in the
future.

.. _explained_variance_score:

Explained variance score
-------------------------

The :func:`explained_variance_score` computes the `explained variance
regression score <https://en.wikipedia.org/wiki/Explained_variation>`_.

If :math:`\hat{y}` is the estimated target output, :math:`y` the corresponding
(correct) target output, and :math:`Var` is `Variance
<https://en.wikipedia.org/wiki/Variance>`_, the square of the standard deviation,
then the explained variance is estimated as follow:

.. math::

  \texttt{explained\_{}variance}(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}

The best possible score is 1.0, lower values are worse.

Here is a small example of usage of the :func:`explained_variance_score`
function::

    >>> from sklearn.metrics import explained_variance_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> explained_variance_score(y_true, y_pred)  # doctest: +ELLIPSIS
    0.957...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
    ... # doctest: +ELLIPSIS
    array([ 0.967...,  1.        ])
    >>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
    ... # doctest: +ELLIPSIS
    0.990...

.. _mean_absolute_error:

Mean absolute error
-------------------

The :func:`mean_absolute_error` function computes `mean absolute
error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_, a risk
metric corresponding to the expected value of the absolute error loss or
:math:`l1`-norm loss.

If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean absolute error
(MAE) estimated over :math:`n_{\text{samples}}` is defined as

.. math::

  \text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right|.

Here is a small example of usage of the :func:`mean_absolute_error` function::

  >>> from sklearn.metrics import mean_absolute_error
  >>> y_true = [3, -0.5, 2, 7]
  >>> y_pred = [2.5, 0.0, 2, 8]
  >>> mean_absolute_error(y_true, y_pred)
  0.5
  >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
  >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
  >>> mean_absolute_error(y_true, y_pred)
  0.75
  >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
  array([ 0.5,  1. ])
  >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
  ... # doctest: +ELLIPSIS
  0.849...

.. _mean_squared_error:

Mean squared error
-------------------

The :func:`mean_squared_error` function computes `mean square
error <https://en.wikipedia.org/wiki/Mean_squared_error>`_, a risk
metric corresponding to the expected value of the squared (quadratic) error loss or
loss.

If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean squared error
(MSE) estimated over :math:`n_{\text{samples}}` is defined as

.. math::

  \text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.

Here is a small example of usage of the :func:`mean_squared_error`
function::

  >>> from sklearn.metrics import mean_squared_error
  >>> y_true = [3, -0.5, 2, 7]
  >>> y_pred = [2.5, 0.0, 2, 8]
  >>> mean_squared_error(y_true, y_pred)
  0.375
  >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
  >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
  >>> mean_squared_error(y_true, y_pred)  # doctest: +ELLIPSIS
  0.7083...

.. topic:: Examples:

  * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`
    for an example of mean squared error usage to
    evaluate gradient boosting regression.

.. _median_absolute_error:

Median absolute error
---------------------

The :func:`median_absolute_error` is particularly interesting because it is
robust to outliers. The loss is calculated by taking the median of all absolute
differences between the target and the prediction.

If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the median absolute error
(MedAE) estimated over :math:`n_{\text{samples}}` is defined as

.. math::

  \text{MedAE}(y, \hat{y}) = \text{median}(\mid y_1 - \hat{y}_1 \mid, \ldots, \mid y_n - \hat{y}_n \mid).

The :func:`median_absolute_error` does not support multioutput.

Here is a small example of usage of the :func:`median_absolute_error`
function::

  >>> from sklearn.metrics import median_absolute_error
  >>> y_true = [3, -0.5, 2, 7]
  >>> y_pred = [2.5, 0.0, 2, 8]
  >>> median_absolute_error(y_true, y_pred)
  0.5

.. _r2_score:

R² score, the coefficient of determination
-------------------------------------------

The :func:`r2_score` function computes R², the `coefficient of
determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_.
It provides a measure of how well future samples are likely to
be predicted by the model. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a
R^2 score of 0.0.

If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the score R² estimated
over :math:`n_{\text{samples}}` is defined as

.. math::

  R^2(y, \hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}} - 1} (y_i - \hat{y}_i)^2}{\sum_{i=0}^{n_\text{samples} - 1} (y_i - \bar{y})^2}

where :math:`\bar{y} =  \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} y_i`.

Here is a small example of usage of the :func:`r2_score` function::

  >>> from sklearn.metrics import r2_score
  >>> y_true = [3, -0.5, 2, 7]
  >>> y_pred = [2.5, 0.0, 2, 8]
  >>> r2_score(y_true, y_pred)  # doctest: +ELLIPSIS
  0.948...
  >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
  >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
  >>> r2_score(y_true, y_pred, multioutput='variance_weighted')
  ... # doctest: +ELLIPSIS
  0.938...
  >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
  >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
  >>> r2_score(y_true, y_pred, multioutput='uniform_average')
  ... # doctest: +ELLIPSIS
  0.936...
  >>> r2_score(y_true, y_pred, multioutput='raw_values')
  ... # doctest: +ELLIPSIS
  array([ 0.965...,  0.908...])
  >>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
  ... # doctest: +ELLIPSIS
  0.925...


.. topic:: Example:

  * See :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`
    for an example of R² score usage to
    evaluate Lasso and Elastic Net on sparse signals.

.. _clustering_metrics:

Clustering metrics
======================

.. currentmodule:: sklearn.metrics

The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions. For more information see the :ref:`clustering_evaluation`
section for instance clustering, and :ref:`biclustering_evaluation` for
biclustering.


.. _dummy_estimators:


Dummy estimators
=================

.. currentmodule:: sklearn.dummy

When doing supervised learning, a simple sanity check consists of comparing
one's estimator against simple rules of thumb. :class:`DummyClassifier`
implements several such simple strategies for classification:

- ``stratified`` generates random predictions by respecting the training
  set class distribution.
- ``most_frequent`` always predicts the most frequent label in the training set.
- ``prior`` always predicts the class that maximizes the class prior
  (like ``most_frequent`) and ``predict_proba`` returns the class prior.
- ``uniform`` generates predictions uniformly at random.
- ``constant`` always predicts a constant label that is provided by the user.
   A major motivation of this method is F1-scoring, when the positive class
   is in the minority.

Note that with all these strategies, the ``predict`` method completely ignores
the input data!

To illustrate :class:`DummyClassifier`, first let's create an imbalanced
dataset::

  >>> from sklearn.datasets import load_iris
  >>> from sklearn.model_selection import train_test_split
  >>> iris = load_iris()
  >>> X, y = iris.data, iris.target
  >>> y[y != 1] = -1
  >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Next, let's compare the accuracy of ``SVC`` and ``most_frequent``::

  >>> from sklearn.dummy import DummyClassifier
  >>> from sklearn.svm import SVC
  >>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
  >>> clf.score(X_test, y_test) # doctest: +ELLIPSIS
  0.63...
  >>> clf = DummyClassifier(strategy='most_frequent',random_state=0)
  >>> clf.fit(X_train, y_train)
  DummyClassifier(constant=None, random_state=0, strategy='most_frequent')
  >>> clf.score(X_test, y_test)  # doctest: +ELLIPSIS
  0.57...

We see that ``SVC`` doesn't do much better than a dummy classifier. Now, let's
change the kernel::

  >>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
  >>> clf.score(X_test, y_test)  # doctest: +ELLIPSIS
  0.97...

We see that the accuracy was boosted to almost 100%.  A cross validation
strategy is recommended for a better estimate of the accuracy, if it
is not too CPU costly. For more information see the :ref:`cross_validation`
section. Moreover if you want to optimize over the parameter space, it is highly
recommended to use an appropriate methodology; see the :ref:`grid_search`
section for details.

More generally, when the accuracy of a classifier is too close to random, it
probably means that something went wrong: features are not helpful, a
hyperparameter is not correctly tuned, the classifier is suffering from class
imbalance, etc...

:class:`DummyRegressor` also implements four simple rules of thumb for regression:

- ``mean`` always predicts the mean of the training targets.
- ``median`` always predicts the median of the training targets.
- ``quantile`` always predicts a user provided quantile of the training targets.
- ``constant`` always predicts a constant value that is provided by the user.

In all these strategies, the ``predict`` method completely ignores
the input data.