1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
|
.. currentmodule:: sklearn
.. _model_evaluation:
========================================================
Model evaluation: quantifying the quality of predictions
========================================================
There are 3 different approaches to evaluate the quality of predictions of a
model:
* **Estimator score method**: Estimators have a ``score`` method providing a
default evaluation criterion for the problem they are designed to solve.
This is not discussed on this page, but in each estimator's documentation.
* **Scoring parameter**: Model-evaluation tools using
:ref:`cross-validation <cross_validation>` (such as
:func:`model_selection.cross_val_score` and
:class:`model_selection.GridSearchCV`) rely on an internal *scoring* strategy.
This is discussed in the section :ref:`scoring_parameter`.
* **Metric functions**: The :mod:`metrics` module implements functions
assessing prediction error for specific purposes. These metrics are detailed
in sections on :ref:`classification_metrics`,
:ref:`multilabel_ranking_metrics`, :ref:`regression_metrics` and
:ref:`clustering_metrics`.
Finally, :ref:`dummy_estimators` are useful to get a baseline
value of those metrics for random predictions.
.. seealso::
For "pairwise" metrics, between *samples* and not estimators or
predictions, see the :ref:`metrics` section.
.. _scoring_parameter:
The ``scoring`` parameter: defining model evaluation rules
==========================================================
Model selection and evaluation using tools, such as
:class:`model_selection.GridSearchCV` and
:func:`model_selection.cross_val_score`, take a ``scoring`` parameter that
controls what metric they apply to the estimators evaluated.
Common cases: predefined values
-------------------------------
For the most common use cases, you can designate a scorer object with the
``scoring`` parameter; the table below shows all possible values.
All scorer objects follow the convention that **higher return values are better
than lower return values**. Thus metrics which measure the distance between
the model and the data, like :func:`metrics.mean_squared_error`, are
available as neg_mean_squared_error which return the negated value
of the metric.
=========================== ========================================= ==================================
Scoring Function Comment
=========================== ========================================= ==================================
**Classification**
'accuracy' :func:`metrics.accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'f1' :func:`metrics.f1_score` for binary targets
'f1_micro' :func:`metrics.f1_score` micro-averaged
'f1_macro' :func:`metrics.f1_score` macro-averaged
'f1_weighted' :func:`metrics.f1_score` weighted average
'f1_samples' :func:`metrics.f1_score` by multilabel sample
'neg_log_loss' :func:`metrics.log_loss` requires ``predict_proba`` support
'precision' etc. :func:`metrics.precision_score` suffixes apply as with 'f1'
'recall' etc. :func:`metrics.recall_score` suffixes apply as with 'f1'
'roc_auc' :func:`metrics.roc_auc_score`
**Clustering**
'adjusted_rand_score' :func:`metrics.adjusted_rand_score`
**Regression**
'neg_mean_absolute_error' :func:`metrics.mean_absolute_error`
'neg_mean_squared_error' :func:`metrics.mean_squared_error`
'neg_median_absolute_error' :func:`metrics.median_absolute_error`
'r2' :func:`metrics.r2_score`
=========================== ========================================= ==================================
Usage examples:
>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf = svm.SVC(probability=True, random_state=0)
>>> cross_val_score(clf, X, y, scoring='neg_log_loss') # doctest: +ELLIPSIS
array([-0.07..., -0.16..., -0.06...])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Valid options are ['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_median_absolute_error', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc']
.. note::
The values listed by the ValueError exception correspond to the functions measuring
prediction accuracy described in the following sections.
The scorer objects for those functions are stored in the dictionary
``sklearn.metrics.SCORERS``.
.. currentmodule:: sklearn.metrics
.. _scoring:
Defining your scoring strategy from metric functions
-----------------------------------------------------
The module :mod:`sklearn.metric` also exposes a set of simple functions
measuring a prediction error given ground truth and prediction:
- functions ending with ``_score`` return a value to
maximize, the higher the better.
- functions ending with ``_error`` or ``_loss`` return a
value to minimize, the lower the better. When converting
into a scorer object using :func:`make_scorer`, set
the ``greater_is_better`` parameter to False (True by default; see the
parameter description below).
Metrics available for various machine learning tasks are detailed in sections
below.
Many metrics are not given names to be used as ``scoring`` values,
sometimes because they require additional parameters, such as
:func:`fbeta_score`. In such cases, you need to generate an appropriate
scoring object. The simplest way to generate a callable object for scoring
is by using :func:`make_scorer`. That function converts metrics
into callables that can be used for model evaluation.
One typical use case is to wrap an existing metric function from the library
with non-default values for its parameters, such as the ``beta`` parameter for
the :func:`fbeta_score` function::
>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, scoring=ftwo_scorer)
The second use case is to build a completely custom scorer object
from a simple python function using :func:`make_scorer`, which can
take several parameters:
* the python function you want to use (``my_custom_loss_func``
in the example below)
* whether the python function returns a score (``greater_is_better=True``,
the default) or a loss (``greater_is_better=False``). If a loss, the output
of the python function is negated by the scorer object, conforming to
the cross validation convention that scorers return higher values for better models.
* for classification metrics only: whether the python function you provided requires continuous decision
certainties (``needs_threshold=True``). The default value is
False.
* any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`.
Here is an example of building custom scorers, and of using the
``greater_is_better`` parameter::
>>> import numpy as np
>>> def my_custom_loss_func(ground_truth, predictions):
... diff = np.abs(ground_truth - predictions).max()
... return np.log(1 + diff)
...
>>> # loss_func will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for ground_truth
>>> # and predictions defined below.
>>> loss = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> score = make_scorer(my_custom_loss_func, greater_is_better=True)
>>> ground_truth = [[1, 1]]
>>> predictions = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(ground_truth, predictions)
>>> loss(clf,ground_truth, predictions) # doctest: +ELLIPSIS
-0.69...
>>> score(clf,ground_truth, predictions) # doctest: +ELLIPSIS
0.69...
.. _diy_scoring:
Implementing your own scoring object
------------------------------------
You can generate even more flexible model scorers by constructing your own
scoring object from scratch, without using the :func:`make_scorer` factory.
For a callable to be a scorer, it needs to meet the protocol specified by
the following two rules:
- It can be called with parameters ``(estimator, X, y)``, where ``estimator``
is the model that should be evaluated, ``X`` is validation data, and ``y`` is
the ground truth target for ``X`` (in the supervised case) or ``None`` (in the
unsupervised case).
- It returns a floating point number that quantifies the
``estimator`` prediction quality on ``X``, with reference to ``y``.
Again, by convention higher numbers are better, so if your scorer
returns loss, that value should be negated.
.. _classification_metrics:
Classification metrics
=======================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure classification performance.
Some metrics might require probability estimates of the positive class,
confidence values, or binary decisions values.
Most implementations allow each sample to provide a weighted contribution
to the overall score, through the ``sample_weight`` parameter.
Some of these are restricted to the binary classification case:
.. autosummary::
:template: function.rst
matthews_corrcoef
precision_recall_curve
roc_curve
Others also work in the multiclass case:
.. autosummary::
:template: function.rst
cohen_kappa_score
confusion_matrix
hinge_loss
Some also work in the multilabel case:
.. autosummary::
:template: function.rst
accuracy_score
classification_report
f1_score
fbeta_score
hamming_loss
jaccard_similarity_score
log_loss
precision_recall_fscore_support
precision_score
recall_score
zero_one_loss
And some work with binary and multilabel (but not multiclass) problems:
.. autosummary::
:template: function.rst
average_precision_score
roc_auc_score
In the following sub-sections, we will describe each of those functions,
preceded by some notes on common API and metric definition.
From binary to multiclass and multilabel
----------------------------------------
Some metrics are essentially defined for binary classification tasks (e.g.
:func:`f1_score`, :func:`roc_auc_score`). In these cases, by default
only the positive label is evaluated, assuming by default that the positive
class is labelled ``1`` (though this may be configurable through the
``pos_label`` parameter).
.. _average:
In extending a binary metric to multiclass or multilabel problems, the data
is treated as a collection of binary problems, one for each class.
There are then a number of ways to average binary metric calculations across
the set of classes, each of which may be useful in some scenario.
Where available, you should select among these using the ``average`` parameter.
* ``"macro"`` simply calculates the mean of the binary metrics,
giving equal weight to each class. In problems where infrequent classes
are nonetheless important, macro-averaging may be a means of highlighting
their performance. On the other hand, the assumption that all classes are
equally important is often untrue, such that macro-averaging will
over-emphasize the typically low performance on an infrequent class.
* ``"weighted"`` accounts for class imbalance by computing the average of
binary metrics in which each class's score is weighted by its presence in the
true data sample.
* ``"micro"`` gives each sample-class pair an equal contribution to the overall
metric (except as a result of sample-weight). Rather than summing the
metric per class, this sums the dividends and divisors that make up the
per-class metrics to calculate an overall quotient.
Micro-averaging may be preferred in multilabel settings, including
multiclass classification where a majority class is to be ignored.
* ``"samples"`` applies only to multilabel problems. It does not calculate a
per-class measure, instead calculating the metric over the true and predicted
classes for each sample in the evaluation data, and returning their
(``sample_weight``-weighted) average.
* Selecting ``average=None`` will return an array with the score for each
class.
While multiclass data is provided to the metric, like binary targets, as an
array of class labels, multilabel data is specified as an indicator matrix,
in which cell ``[i, j]`` has value 1 if sample ``i`` has label ``j`` and value
0 otherwise.
.. _accuracy_score:
Accuracy score
--------------
The :func:`accuracy_score` function computes the
`accuracy <https://en.wikipedia.org/wiki/Accuracy_and_precision>`_, either the fraction
(default) or the count (normalize=False) of correct predictions.
In multilabel classification, the function returns the subset accuracy. If
the entire set of predicted labels for a sample strictly match with the true
set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.
If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the fraction of correct predictions over :math:`n_\text{samples}` is
defined as
.. math::
\texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
In the multilabel case with binary label indicators: ::
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_feature_selection_plot_permutation_test_for_classification.py`
for an example of accuracy score usage using permutations of
the dataset.
.. _cohen_kappa:
Cohen's kappa
-------------
The function :func:`cohen_kappa_score` computes `Cohen's kappa
<https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ statistic.
This measure is intended to compare labelings by different human annotators,
not a classifier versus a ground truth.
The kappa score (see docstring) is a number between -1 and 1.
Scores above .8 are generally considered good agreement;
zero or lower means no agreement (practically random labels).
Kappa scores can be computed for binary or multiclass problems,
but not for multilabel problems (except by manually computing a per-label score)
and not for more than two annotators.
>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286
.. _confusion_matrix:
Confusion matrix
----------------
The :func:`confusion_matrix` function evaluates
classification accuracy by computing the `confusion matrix
<https://en.wikipedia.org/wiki/Confusion_matrix>`_.
By definition, entry :math:`i, j` in a confusion matrix is
the number of observations actually in group :math:`i`, but
predicted to be in group :math:`j`. Here is an example::
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
Here is a visual representation of such a confusion matrix (this figure comes
from the :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py` example):
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_confusion_matrix_001.png
:target: ../auto_examples/model_selection/plot_confusion_matrix.html
:scale: 75
:align: center
For binary problems, we can get counts of true negatives, false positives,
false negatives and true positives as follows::
>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
for an example of using a confusion matrix to evaluate classifier output
quality.
* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
for an example of using a confusion matrix to classify
hand-written digits.
* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
for an example of using a confusion matrix to classify text
documents.
.. _classification_report:
Classification report
----------------------
The :func:`classification_report` function builds a text report showing the
main classification metrics. Here is a small example with custom ``target_names``
and inferred labels::
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 2, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
<BLANKLINE>
class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 1.00 1.00 2
<BLANKLINE>
avg / total 0.67 0.80 0.72 5
<BLANKLINE>
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
for an example of classification report usage for
hand-written digits.
* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
for an example of classification report usage for text
documents.
* See :ref:`sphx_glr_auto_examples_model_selection_grid_search_digits.py`
for an example of classification report usage for
grid search with nested cross-validation.
.. _hamming_loss:
Hamming loss
-------------
The :func:`hamming_loss` computes the average Hamming loss or `Hamming
distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ between two sets
of samples.
If :math:`\hat{y}_j` is the predicted value for the :math:`j`-th label of
a given sample, :math:`y_j` is the corresponding true value, and
:math:`n_\text{labels}` is the number of classes or labels, then the
Hamming loss :math:`L_{Hamming}` between two samples is defined as:
.. math::
L_{Hamming}(y, \hat{y}) = \frac{1}{n_\text{labels}} \sum_{j=0}^{n_\text{labels} - 1} 1(\hat{y}_j \not= y_j)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_. ::
>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25
In the multilabel case with binary label indicators: ::
>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75
.. note::
In multiclass classification, the Hamming loss corresponds to the Hamming
distance between ``y_true`` and ``y_pred`` which is similar to the
:ref:`zero_one_loss` function. However, while zero-one loss penalizes
prediction sets that do not strictly match true sets, the Hamming loss
penalizes individual labels. Thus the Hamming loss, upper bounded by the zero-one
loss, is always between zero and one, inclusive; and predicting a proper subset
or superset of the true labels will give a Hamming loss between
zero and one, exclusive.
.. _jaccard_similarity_score:
Jaccard similarity coefficient score
-------------------------------------
The :func:`jaccard_similarity_score` function computes the average (default)
or sum of `Jaccard similarity coefficients
<https://en.wikipedia.org/wiki/Jaccard_index>`_, also called the Jaccard index,
between pairs of label sets.
The Jaccard similarity coefficient of the :math:`i`-th samples,
with a ground truth label set :math:`y_i` and predicted label set
:math:`\hat{y}_i`, is defined as
.. math::
J(y_i, \hat{y}_i) = \frac{|y_i \cap \hat{y}_i|}{|y_i \cup \hat{y}_i|}.
In binary and multiclass classification, the Jaccard similarity coefficient
score is equal to the classification accuracy.
::
>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2
In the multilabel case with binary label indicators: ::
>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75
.. _precision_recall_f_measure_metrics:
Precision, recall and F-measures
---------------------------------
Intuitively, `precision
<https://en.wikipedia.org/wiki/Precision_and_recall#Precision>`_ is the ability
of the classifier not to label as positive a sample that is negative, and
`recall <https://en.wikipedia.org/wiki/Precision_and_recall#Recall>`_ is the
ability of the classifier to find all the positive samples.
The `F-measure <https://en.wikipedia.org/wiki/F1_score>`_
(:math:`F_\beta` and :math:`F_1` measures) can be interpreted as a weighted
harmonic mean of the precision and recall. A
:math:`F_\beta` measure reaches its best value at 1 and its worst score at 0.
With :math:`\beta = 1`, :math:`F_\beta` and
:math:`F_1` are equivalent, and the recall and the precision are equally important.
The :func:`precision_recall_curve` computes a precision-recall curve
from the ground truth label and a score given by the classifier
by varying a decision threshold.
The :func:`average_precision_score` function computes the average precision
(AP) from prediction scores. This score corresponds to the area under the
precision-recall curve. The value is between 0 and 1 and higher is better.
With random predictions, the AP is the fraction of positive samples.
Several functions allow you to analyze the precision, recall and F-measures
score:
.. autosummary::
:template: function.rst
average_precision_score
f1_score
fbeta_score
precision_recall_curve
precision_recall_fscore_support
precision_score
recall_score
Note that the :func:`precision_recall_curve` function is restricted to the
binary case. The :func:`average_precision_score` function works only in
binary classification and multilabel indicator format.
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
for an example of :func:`f1_score` usage to classify text
documents.
* See :ref:`sphx_glr_auto_examples_model_selection_grid_search_digits.py`
for an example of :func:`precision_score` and :func:`recall_score` usage
to estimate parameters using grid search with nested cross-validation.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py`
for an example of :func:`precision_recall_curve` usage to evaluate
classifier output quality.
* See :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_recovery.py`
for an example of :func:`precision_recall_curve` usage to select
features for sparse linear models.
Binary classification
^^^^^^^^^^^^^^^^^^^^^
In a binary classification task, the terms ''positive'' and ''negative'' refer
to the classifier's prediction, and the terms ''true'' and ''false'' refer to
whether that prediction corresponds to the external judgment (sometimes known
as the ''observation''). Given these definitions, we can formulate the
following table:
+-------------------+------------------------------------------------+
| | Actual class (observation) |
+-------------------+---------------------+--------------------------+
| Predicted class | tp (true positive) | fp (false positive) |
| (expectation) | Correct result | Unexpected result |
| +---------------------+--------------------------+
| | fn (false negative) | tn (true negative) |
| | Missing result | Correct absence of result|
+-------------------+---------------------+--------------------------+
In this context, we can define the notions of precision, recall and F-measure:
.. math::
\text{precision} = \frac{tp}{tp + fp},
.. math::
\text{recall} = \frac{tp}{tp + fn},
.. math::
F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}.
Here are some small examples in binary classification::
>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred) # doctest: +ELLIPSIS
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5) # doctest: +ELLIPSIS
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1) # doctest: +ELLIPSIS
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2) # doctest: +ELLIPSIS
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5) # doctest: +ELLIPSIS
(array([ 0.66..., 1. ]), array([ 1. , 0.5]), array([ 0.71..., 0.83...]), array([2, 2]...))
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision # doctest: +ELLIPSIS
array([ 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([ 1. , 0.5, 0.5, 0. ])
>>> threshold
array([ 0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS
0.79...
Multiclass and multilabel classification
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In multiclass and multilabel classification task, the notions of precision,
recall, and F-measures can be applied to each label independently.
There are a few ways to combine results across labels,
specified by the ``average`` argument to the
:func:`average_precision_score` (multilabel only), :func:`f1_score`,
:func:`fbeta_score`, :func:`precision_recall_fscore_support`,
:func:`precision_score` and :func:`recall_score` functions, as described
:ref:`above <average>`. Note that for "micro"-averaging in a multiclass setting
with all labels included will produce equal precision, recall and :math:`F`,
while "weighted" averaging may produce an F-score that is not between
precision and recall.
To make this more explicit, consider the following notation:
* :math:`y` the set of *predicted* :math:`(sample, label)` pairs
* :math:`\hat{y}` the set of *true* :math:`(sample, label)` pairs
* :math:`L` the set of labels
* :math:`S` the set of samples
* :math:`y_s` the subset of :math:`y` with sample :math:`s`,
i.e. :math:`y_s := \left\{(s', l) \in y | s' = s\right\}`
* :math:`y_l` the subset of :math:`y` with label :math:`l`
* similarly, :math:`\hat{y}_s` and :math:`\hat{y}_l` are subsets of
:math:`\hat{y}`
* :math:`P(A, B) := \frac{\left| A \cap B \right|}{\left|A\right|}`
* :math:`R(A, B) := \frac{\left| A \cap B \right|}{\left|B\right|}`
(Conventions vary on handling :math:`B = \emptyset`; this implementation uses
:math:`R(A, B):=0`, and similar for :math:`P`.)
* :math:`F_\beta(A, B) := \left(1 + \beta^2\right) \frac{P(A, B) \times R(A, B)}{\beta^2 P(A, B) + R(A, B)}`
Then the metrics are defined as:
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``average`` | Precision | Recall | F\_beta |
+===============+==================================================================================================================+==================================================================================================================+======================================================================================================================+
|``"micro"`` | :math:`P(y, \hat{y})` | :math:`R(y, \hat{y})` | :math:`F_\beta(y, \hat{y})` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"samples"`` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} P(y_s, \hat{y}_s)` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} R(y_s, \hat{y}_s)` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} F_\beta(y_s, \hat{y}_s)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"macro"`` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} P(y_l, \hat{y}_l)` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} R(y_l, \hat{y}_l)` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} F_\beta(y_l, \hat{y}_l)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"weighted"`` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| P(y_l, \hat{y}_l)` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| R(y_l, \hat{y}_l)` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| F_\beta(y_l, \hat{y}_l)`|
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``None`` | :math:`\langle P(y_l, \hat{y}_l) | l \in L \rangle` | :math:`\langle R(y_l, \hat{y}_l) | l \in L \rangle` | :math:`\langle F_\beta(y_l, \hat{y}_l) | l \in L \rangle` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
... # doctest: +ELLIPSIS
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5) # doctest: +ELLIPSIS
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
... # doctest: +ELLIPSIS
(array([ 0.66..., 0. , 0. ]), array([ 1., 0., 0.]), array([ 0.71..., 0. , 0. ]), array([2, 2, 2]...))
For multiclass classification with a "negative class", it is possible to exclude some labels:
>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0
Similarly, labels not present in the data sample may be accounted for in macro-averaging.
>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
... # doctest: +ELLIPSIS
0.166...
.. _hinge_loss:
Hinge loss
----------
The :func:`hinge_loss` function computes the average distance between
the model and the data using
`hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_, a one-sided metric
that considers only prediction errors. (Hinge
loss is used in maximal margin classifiers such as support vector machines.)
If the labels are encoded with +1 and -1, :math:`y`: is the true
value, and :math:`w` is the predicted decisions as output by
``decision_function``, then the hinge loss is defined as:
.. math::
L_\text{Hinge}(y, w) = \max\left\{1 - wy, 0\right\} = \left|1 - wy\right|_+
If there are more than two labels, :func:`hinge_loss` uses a multiclass variant
due to Crammer & Singer.
`Here <http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf>`_ is
the paper describing it.
If :math:`y_w` is the predicted decision for true label and :math:`y_t` is the
maximum of the predicted decisions for all other labels, where predicted
decisions are output by decision function, then multiclass hinge loss is defined
by:
.. math::
L_\text{Hinge}(y_w, y_t) = \max\left\{1 + y_t - y_w, 0\right\}
Here a small example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a binary class problem::
>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
verbose=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision # doctest: +ELLIPSIS
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision) # doctest: +ELLIPSIS
0.3...
Here is an example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a multiclass problem::
>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels) #doctest: +ELLIPSIS
0.56...
.. _log_loss:
Log loss
--------
Log loss, also called logistic regression loss or
cross-entropy loss, is defined on probability estimates. It is
commonly used in (multinomial) logistic regression and neural networks, as well
as in some variants of expectation-maximization, and can be used to evaluate the
probability outputs (``predict_proba``) of a classifier instead of its
discrete predictions.
For binary classification with a true label :math:`y \in \{0,1\}`
and a probability estimate :math:`p = \operatorname{Pr}(y = 1)`,
the log loss per sample is the negative log-likelihood
of the classifier given the true label:
.. math::
L_{\log}(y, p) = -\log \operatorname{Pr}(y|p) = -(y \log (p) + (1 - y) \log (1 - p))
This extends to the multiclass case as follows.
Let the true labels for a set of samples
be encoded as a 1-of-K binary indicator matrix :math:`Y`,
i.e., :math:`y_{i,k} = 1` if sample :math:`i` has label :math:`k`
taken from a set of :math:`K` labels.
Let :math:`P` be a matrix of probability estimates,
with :math:`p_{i,k} = \operatorname{Pr}(t_{i,k} = 1)`.
Then the log loss of the whole set is
.. math::
L_{\log}(Y, P) = -\log \operatorname{Pr}(Y|P) = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}
To see how this generalizes the binary log loss given above,
note that in the binary case,
:math:`p_{i,0} = 1 - p_{i,1}` and :math:`y_{i,0} = 1 - y_{i,1}`,
so expanding the inner sum over :math:`y_{i,k} \in \{0,1\}`
gives the binary log loss.
The :func:`log_loss` function computes log loss given a list of ground-truth
labels and a probability matrix, as returned by an estimator's ``predict_proba``
method.
>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred) # doctest: +ELLIPSIS
0.1738...
The first ``[.9, .1]`` in ``y_pred`` denotes 90% probability that the first
sample has label 0. The log loss is non-negative.
.. _matthews_corrcoef:
Matthews correlation coefficient
---------------------------------
The :func:`matthews_corrcoef` function computes the
`Matthew's correlation coefficient (MCC) <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_
for binary classes. Quoting Wikipedia:
"The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary (two-class) classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are
of very different sizes. The MCC is in essence a correlation coefficient
value between -1 and +1. A coefficient of +1 represents a perfect
prediction, 0 an average random prediction and -1 an inverse prediction.
The statistic is also known as the phi coefficient."
If :math:`tp`, :math:`tn`, :math:`fp` and :math:`fn` are respectively the
number of true positives, true negatives, false positives and false negatives,
the MCC coefficient is defined as
.. math::
MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.
Here is a small example illustrating the usage of the :func:`matthews_corrcoef`
function:
>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred) # doctest: +ELLIPSIS
-0.33...
.. _roc_metrics:
Receiver operating characteristic (ROC)
---------------------------------------
The function :func:`roc_curve` computes the
`receiver operating characteristic curve, or ROC curve <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_.
Quoting Wikipedia :
"A receiver operating characteristic (ROC), or simply ROC curve, is a
graphical plot which illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created by plotting
the fraction of true positives out of the positives (TPR = true positive
rate) vs. the fraction of false positives out of the negatives (FPR = false
positive rate), at various threshold settings. TPR is also known as
sensitivity, and FPR is one minus the specificity or true negative rate."
This function requires the true binary
value and the target scores, which can either be probability estimates of the
positive class, confidence values, or binary decisions.
Here is a small example of how to use the :func:`roc_curve` function::
>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. , 0.5, 0.5, 1. ])
>>> tpr
array([ 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ 0.8 , 0.4 , 0.35, 0.1 ])
This figure shows an example of such an ROC curve:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_001.png
:target: ../auto_examples/model_selection/plot_roc.html
:scale: 75
:align: center
The :func:`roc_auc_score` function computes the area under the receiver
operating characteristic (ROC) curve, which is also denoted by
AUC or AUROC. By computing the
area under the roc curve, the curve information is summarized in one number.
For more information see the `Wikipedia article on AUC
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
In multi-label classification, the :func:`roc_auc_score` function is
extended by averaging over the labels as :ref:`above <average>`.
Compared to metrics such as the subset accuracy, the Hamming loss, or the
F1 score, ROC doesn't require optimizing a threshold for each label. The
:func:`roc_auc_score` function can also be used in multi-class classification,
if the predicted outputs have been binarized.
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_002.png
:target: ../auto_examples/model_selection/plot_roc.html
:scale: 75
:align: center
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`
for an example of using ROC to
evaluate the quality of the output of a classifier.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`
for an example of using ROC to
evaluate classifier output quality, using cross-validation.
* See :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
for an example of using ROC to
model species distribution.
.. _zero_one_loss:
Zero one loss
--------------
The :func:`zero_one_loss` function computes the sum or the average of the 0-1
classification loss (:math:`L_{0-1}`) over :math:`n_{\text{samples}}`. By
default, the function normalizes over the sample. To get the sum of the
:math:`L_{0-1}`, set ``normalize`` to ``False``.
In multilabel classification, the :func:`zero_one_loss` scores a subset as
one if its labels strictly match the predictions, and as a zero if there
are any errors. By default, the function returns the percentage of imperfectly
predicted subsets. To get the count of such subsets instead, set
``normalize`` to ``False``
If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the 0-1 loss :math:`L_{0-1}` is defined as:
.. math::
L_{0-1}(y_i, \hat{y}_i) = 1(\hat{y}_i \not= y_i)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.
>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1
In the multilabel case with binary label indicators, where the first label
set [0,1] has an error: ::
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False)
1
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`
for an example of zero one loss usage to perform recursive feature
elimination with cross-validation.
.. _brier_score_loss:
Brier score loss
----------------
The :func:`brier_score_loss` function computes the
`Brier score <https://en.wikipedia.org/wiki/Brier_score>`_
for binary classes. Quoting Wikipedia:
"The Brier score is a proper score function that measures the accuracy of
probabilistic predictions. It is applicable to tasks in which predictions
must assign probabilities to a set of mutually exclusive discrete outcomes."
This function returns a score of the mean square difference between the actual
outcome and the predicted probability of the possible outcome. The actual
outcome has to be 1 or 0 (true or false), while the predicted probability of
the actual outcome can be a value between 0 and 1.
The brier score loss is also between 0 to 1 and the lower the score (the mean
square difference is smaller), the more accurate the prediction is. It can be
thought of as a measure of the "calibration" of a set of probabilistic
predictions.
.. math::
BS = \frac{1}{N} \sum_{t=1}^{N}(f_t - o_t)^2
where : :math:`N` is the total number of predictions, :math:`f_t` is the
predicted probablity of the actual outcome :math:`o_t`.
Here is a small example of usage of this function:::
>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py`
for an example of Brier score loss usage to perform probability
calibration of classifiers.
.. topic:: References:
* G. Brier, `Verification of forecasts expressed in terms of probability
<http://docs.lib.noaa.gov/rescue/mwr/078/mwr-078-01-0001.pdf>`_,
Monthly weather review 78.1 (1950)
.. _multilabel_ranking_metrics:
Multilabel ranking metrics
==========================
.. currentmodule:: sklearn.metrics
In multilabel learning, each sample can have any number of ground truth labels
associated with it. The goal is to give high scores and better rank to
the ground truth labels.
.. _coverage_error:
Coverage error
--------------
The :func:`coverage_error` function computes the average number of labels that
have to be included in the final prediction such that all true labels
are predicted. This is useful if you want to know how many top-scored-labels
you have to predict in average without missing any true one. The best value
of this metrics is thus the average number of true labels.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the coverage is defined as
.. math::
coverage(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \max_{j:y_{ij} = 1} \text{rank}_{ij}
with :math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`.
Given the rank definition, ties in ``y_scores`` are broken by giving the
maximal rank that would have been assigned to all tied values.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5
.. _label_ranking_average_precision:
Label ranking average precision
-------------------------------
The :func:`label_ranking_average_precision_score` function
implements label ranking average precision (LRAP). This metric is linked to
the :func:`average_precision_score` function, but is based on the notion of
label ranking instead of precision and recall.
Label ranking average precision (LRAP) is the average over each ground truth
label assigned to each sample, of the ratio of true vs. total labels with lower
score. This metric will yield better scores if you are able to give better rank
to the labels associated with each sample. The obtained score is always strictly
greater than 0, and the best value is 1. If there is exactly one relevant
label per sample, label ranking average precision is equivalent to the `mean
reciprocal rank <https://en.wikipedia.org/wiki/Mean_reciprocal_rank>`_.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}}`,
the average precision is defined as
.. math::
LRAP(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|}
\sum_{j:y_{ij} = 1} \frac{|\mathcal{L}_{ij}|}{\text{rank}_{ij}}
with :math:`\mathcal{L}_{ij} = \left\{k: y_{ik} = 1, \hat{f}_{ik} \geq \hat{f}_{ij} \right\}`,
:math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`
and :math:`|\cdot|` is the l0 norm or the cardinality of the set.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score) # doctest: +ELLIPSIS
0.416...
.. _label_ranking_loss:
Ranking loss
------------
The :func:`label_ranking_loss` function computes the ranking loss which
averages over the samples the number of label pairs that are incorrectly
ordered, i.e. true labels have a lower score than false labels, weighted by
the inverse number of false and true labels. The lowest achievable
ranking loss is zero.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the ranking loss is defined as
.. math::
\text{ranking\_loss}(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|(n_\text{labels} - |y_i|)}
\left|\left\{(k, l): \hat{f}_{ik} < \hat{f}_{il}, y_{ik} = 1, y_{il} = 0 \right\}\right|
where :math:`|\cdot|` is the :math:`\ell_0` norm or the cardinality of the set.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score) # doctest: +ELLIPSIS
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0
.. _regression_metrics:
Regression metrics
===================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
:func:`mean_absolute_error`, :func:`explained_variance_score` and
:func:`r2_score`.
These functions have an ``multioutput`` keyword argument which specifies the
way the scores or losses for each individual target should be averaged. The
default is ``'uniform_average'``, which specifies a uniformly weighted mean
over outputs. If an ``ndarray`` of shape ``(n_outputs,)`` is passed, then its
entries are interpreted as weights and an according weighted average is
returned. If ``multioutput`` is ``'raw_values'`` is specified, then all
unaltered individual scores or losses will be returned in an array of shape
``(n_outputs,)``.
The :func:`r2_score` and :func:`explained_variance_score` accept an additional
value ``'variance_weighted'`` for the ``multioutput`` parameter. This option
leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured
unscaled variance. If the target variables are of different scale, then this
score puts more importance on well explaining the higher variance variables.
``multioutput='variance_weighted'`` is the default value for :func:`r2_score`
for backward compatibility. This will be changed to ``uniform_average`` in the
future.
.. _explained_variance_score:
Explained variance score
-------------------------
The :func:`explained_variance_score` computes the `explained variance
regression score <https://en.wikipedia.org/wiki/Explained_variation>`_.
If :math:`\hat{y}` is the estimated target output, :math:`y` the corresponding
(correct) target output, and :math:`Var` is `Variance
<https://en.wikipedia.org/wiki/Variance>`_, the square of the standard deviation,
then the explained variance is estimated as follow:
.. math::
\texttt{explained\_{}variance}(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}
The best possible score is 1.0, lower values are worse.
Here is a small example of usage of the :func:`explained_variance_score`
function::
>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
... # doctest: +ELLIPSIS
array([ 0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
... # doctest: +ELLIPSIS
0.990...
.. _mean_absolute_error:
Mean absolute error
-------------------
The :func:`mean_absolute_error` function computes `mean absolute
error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_, a risk
metric corresponding to the expected value of the absolute error loss or
:math:`l1`-norm loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean absolute error
(MAE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right|.
Here is a small example of usage of the :func:`mean_absolute_error` function::
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
... # doctest: +ELLIPSIS
0.849...
.. _mean_squared_error:
Mean squared error
-------------------
The :func:`mean_squared_error` function computes `mean square
error <https://en.wikipedia.org/wiki/Mean_squared_error>`_, a risk
metric corresponding to the expected value of the squared (quadratic) error loss or
loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean squared error
(MSE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.
Here is a small example of usage of the :func:`mean_squared_error`
function::
>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS
0.7083...
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`
for an example of mean squared error usage to
evaluate gradient boosting regression.
.. _median_absolute_error:
Median absolute error
---------------------
The :func:`median_absolute_error` is particularly interesting because it is
robust to outliers. The loss is calculated by taking the median of all absolute
differences between the target and the prediction.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the median absolute error
(MedAE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MedAE}(y, \hat{y}) = \text{median}(\mid y_1 - \hat{y}_1 \mid, \ldots, \mid y_n - \hat{y}_n \mid).
The :func:`median_absolute_error` does not support multioutput.
Here is a small example of usage of the :func:`median_absolute_error`
function::
>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5
.. _r2_score:
R² score, the coefficient of determination
-------------------------------------------
The :func:`r2_score` function computes R², the `coefficient of
determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_.
It provides a measure of how well future samples are likely to
be predicted by the model. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a
R^2 score of 0.0.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the score R² estimated
over :math:`n_{\text{samples}}` is defined as
.. math::
R^2(y, \hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}} - 1} (y_i - \hat{y}_i)^2}{\sum_{i=0}^{n_\text{samples} - 1} (y_i - \bar{y})^2}
where :math:`\bar{y} = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} y_i`.
Here is a small example of usage of the :func:`r2_score` function::
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
... # doctest: +ELLIPSIS
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
... # doctest: +ELLIPSIS
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
... # doctest: +ELLIPSIS
array([ 0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
... # doctest: +ELLIPSIS
0.925...
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`
for an example of R² score usage to
evaluate Lasso and Elastic Net on sparse signals.
.. _clustering_metrics:
Clustering metrics
======================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions. For more information see the :ref:`clustering_evaluation`
section for instance clustering, and :ref:`biclustering_evaluation` for
biclustering.
.. _dummy_estimators:
Dummy estimators
=================
.. currentmodule:: sklearn.dummy
When doing supervised learning, a simple sanity check consists of comparing
one's estimator against simple rules of thumb. :class:`DummyClassifier`
implements several such simple strategies for classification:
- ``stratified`` generates random predictions by respecting the training
set class distribution.
- ``most_frequent`` always predicts the most frequent label in the training set.
- ``prior`` always predicts the class that maximizes the class prior
(like ``most_frequent`) and ``predict_proba`` returns the class prior.
- ``uniform`` generates predictions uniformly at random.
- ``constant`` always predicts a constant label that is provided by the user.
A major motivation of this method is F1-scoring, when the positive class
is in the minority.
Note that with all these strategies, the ``predict`` method completely ignores
the input data!
To illustrate :class:`DummyClassifier`, first let's create an imbalanced
dataset::
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
Next, let's compare the accuracy of ``SVC`` and ``most_frequent``::
>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test) # doctest: +ELLIPSIS
0.63...
>>> clf = DummyClassifier(strategy='most_frequent',random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(constant=None, random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test) # doctest: +ELLIPSIS
0.57...
We see that ``SVC`` doesn't do much better than a dummy classifier. Now, let's
change the kernel::
>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test) # doctest: +ELLIPSIS
0.97...
We see that the accuracy was boosted to almost 100%. A cross validation
strategy is recommended for a better estimate of the accuracy, if it
is not too CPU costly. For more information see the :ref:`cross_validation`
section. Moreover if you want to optimize over the parameter space, it is highly
recommended to use an appropriate methodology; see the :ref:`grid_search`
section for details.
More generally, when the accuracy of a classifier is too close to random, it
probably means that something went wrong: features are not helpful, a
hyperparameter is not correctly tuned, the classifier is suffering from class
imbalance, etc...
:class:`DummyRegressor` also implements four simple rules of thumb for regression:
- ``mean`` always predicts the mean of the training targets.
- ``median`` always predicts the median of the training targets.
- ``quantile`` always predicts a user provided quantile of the training targets.
- ``constant`` always predicts a constant value that is provided by the user.
In all these strategies, the ``predict`` method completely ignores
the input data.
|