File: testimonials.rst

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (836 lines) | stat: -rw-r--r-- 22,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
.. _testimonials:

================================================================================
Who is using scikit-learn?
================================================================================

.. raw:: html

  <div class="testimonial">


.. to add a testimonials, just XXX

`Spotify <http://www.spotify.com>`_
------------------------------------

.. raw:: html

    <div class="logo">

.. image:: images/spotify.png
    :width: 120pt
    :target: http://www.spotify.com

.. raw:: html

    </div>

Scikit-learn provides a toolbox with solid implementations of a bunch of
state-of-the-art models and makes it easy to plug them into existing
applications. We've been using it quite a lot for music recommendations at
Spotify and I think it's the most well-designed ML package I've seen so
far.

.. raw:: html

   <span class="testimonial-author">

Erik Bernhardsson, Engineering Manager Music Discovery & Machine Learning, Spotify

.. raw:: html

   </span>

`Inria <http://www.inria.fr>`_
-------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/inria.png
    :width: 120pt
    :target: http://www.inria.fr

.. raw:: html

  </div>

.. title Scikit-learn for efficient and easier machine learning research
.. Author: Gaël Varoquaux


At INRIA, we use scikit-learn to support leading-edge basic research in many
teams: `Parietal <https://team.inria.fr/parietal/>`_ for neuroimaging, `Lear
<http://lear.inrialpes.fr/>`_ for computer vision, `Visages
<https://team.inria.fr/visages/>`_ for medical image analysis, `Privatics
<https://team.inria.fr/privatics>`_ for security. The project is a fantastic
tool to address difficult applications of machine learing in an academic
environment as it is performant and versatile, but all easy-to-use and well
documented, which makes it well suited to grad students.


.. raw:: html

   <span class="testimonial-author">

Gaël Varoquaux, research at Parietal

.. raw:: html

   </span>


`betaworks <https://betaworks.com>`_
------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/betaworks.png
    :width: 120pt
    :target: https://betaworks.com

.. raw:: html

  </div>

Betaworks is a NYC-based startup studio that builds new products, grows
companies, and invests in others. Over the past 8 years we’ve launched a
handful of social data analytics-driven services, such as Bitly, Chartbeat,
digg and Scale Model. Consistently the betaworks data science team uses
Scikit-learn for a variety of tasks. From exploratory analysis, to product
development, it is an essential part of our toolkit. Recent uses are included
in `digg’s new video recommender system
<https://medium.com/i-data/the-digg-video-recommender-2f9ade7c4ba3#.g5kk2u89v>`_,
and Poncho’s `dynamic heuristic subspace clustering
<http://data.betaworks.com/a-data-driven-approach-to-verbalize-weather-forecasts-at-scale/>`_. 

.. raw:: html

   <span class="testimonial-author">

Gilad Lotan, Chief Data Scientist

.. raw:: html

   </span>


`Evernote <https://evernote.com>`_
----------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/evernote.png
    :width: 120pt
    :target: https://evernote.com

.. raw:: html

  </div>


Building a classifier is typically an iterative process of exploring
the data, selecting the features (the attributes of the data believed
to be predictive in some way), training the models, and finally
evaluating them. For many of these tasks, we relied on the excellent
scikit-learn package for Python.

`Read more <http://blog.evernote.com/tech/2013/01/22/stay-classified/>`_

.. raw:: html

   <span class="testimonial-author">

Mark Ayzenshtat, VP, Augmented Intelligence

.. raw:: html

   </span>

`Télécom ParisTech <http://www.telecom-paristech.fr>`_
--------------------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/telecomparistech.jpg
    :width: 120pt
    :target: https://www.telecom-paristech.fr

.. raw:: html

  </div>


At Telecom ParisTech, scikit-learn is used for hands-on sessions and home
assignments in introductory and advanced machine learning courses. The classes
are for undergrads and masters students. The great benefit of scikit-learn is
its fast learning curve that allows students to quickly start working on
interesting and motivating problems.

.. raw:: html

   <span class="testimonial-author">

Alexandre Gramfort, Assistant Professor

.. raw:: html

   </span>


`Booking.com <http://booking.com>`_
-------------------------------------
.. raw:: html

  <div class="logo">

.. image:: images/booking.png
    :width: 120pt
    :target: http://www.booking.com

.. raw:: html

  </div>

At Booking.com, we use machine learning algorithms for many different
applications, such as recommending hotels and destinations to our customers,
detecting fraudulent reservations, or scheduling our customer service agents.
Scikit-learn is one of the tools we use when implementing standard algorithms
for prediction tasks. Its API and documentations are excellent and make it easy
to use. The scikit-learn developers do a great job of incorporating state of
the art implementations and new algorithms into the package. Thus, scikit-learn
provides convenient access to a wide spectrum of algorithms, and allows us to
readily find the right tool for the right job.


.. raw:: html

   <span class="testimonial-author">

Melanie Mueller, Data Scientist

.. raw:: html

   </span>

`AWeber <http://www.aweber.com>`_
------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/aweber.png
    :width: 120pt
    :target: http://www.aweber.com

.. raw:: html

  </div>


The scikit-learn toolkit is indispensable for the Data Analysis and Management
team at AWeber.  It allows us to do AWesome stuff we would not otherwise have
the time or resources to accomplish. The documentation is excellent, allowing
new engineers to quickly evaluate and apply many different algorithms to our
data. The text feature extraction utilities are useful when working with the
large volume of email content we have at AWeber. The RandomizedPCA
implementation, along with Pipelining and FeatureUnions, allows us to develop
complex machine learning algorithms efficiently and reliably.

Anyone interested in learning more about how AWeber deploys scikit-learn in a
production environment should check out talks from PyData Boston by AWeber's
Michael Becker available at https://github.com/mdbecker/pydata_2013

.. raw:: html

   <span class="testimonial-author">

Michael Becker, Software Engineer, Data Analysis and Management Ninjas

.. raw:: html

   </span>

`Yhat <https://www.yhat.com>`_
------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/yhat.png
    :width: 120pt
    :target: https://www.yhat.com

.. raw:: html

  </div>

The combination of consistent APIs, thorough documentation, and top notch
implementation make scikit-learn our favorite machine learning package in
Python. scikit-learn makes doing advanced analysis in Python accessible to
anyone. At Yhat, we make it easy to integrate these models into your production
applications. Thus eliminating the unnecessary dev time encountered
productionizing analytical work.


.. raw:: html

   <span class="testimonial-author">

Greg Lamp, Co-founder Yhat

.. raw:: html

   </span>

`Rangespan <https://www.rangespan.com>_`
----------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/rangespan.png
    :width: 120pt
    :target: https://www.rangespan.com

.. raw:: html

  </div>

The Python scikit-learn toolkit is a core tool in the data science
group at Rangespan. Its large collection of well documented models and
algorithms allow our team of data scientists to prototype fast and
quickly iterate to find the right solution to our learning problems.
We find that scikit-learn is not only the right tool for prototyping,
but its careful and well tested implementation give us the confidence
to run scikit-learn models in production.

.. raw:: html

   <span class="testimonial-author">

Jurgen Van Gael, Data Science Director at Rangespan Ltd

.. raw:: html

   </span>

`Birchbox <https://www.birchbox.com>`_
------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/birchbox.jpg
    :width: 120pt
    :target: https://www.birchbox.com

.. raw:: html

  </div>

At Birchbox, we face a range of machine learning problems typical to
E-commerce: product recommendation, user clustering, inventory prediction,
trends detection, etc. Scikit-learn lets us experiment with many models,
especially in the exploration phase of a new project: the data can be passed
around in a consistent way; models are easy to save and reuse; updates keep us
informed of new developments from the pattern discovery research community.
Scikit-learn is an important tool for our team, built the right way in the
right language.

.. raw:: html

   <span class="testimonial-author">

Thierry Bertin-Mahieux, Birchbox, Data Scientist

.. raw:: html

   </span>


`Bestofmedia Group <http://www.bestofmedia.com>`_
--------------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/bestofmedia-logo.png
    :width: 120pt
    :target: http://www.bestofmedia.com

.. raw:: html

  </div>

Scikit-learn is our #1 toolkit for all things machine learning
at Bestofmedia. We use it for a variety of tasks (e.g. spam fighting,
ad click prediction, various ranking models) thanks to the varied,
state-of-the-art algorithm implementations packaged into it.
In the lab it accelerates prototyping of complex pipelines. In
production I can say it has proven to be robust and efficient enough
to be deployed for business critical components.

.. raw:: html

   <span class="testimonial-author">

Eustache Diemert, Lead Scientist Bestofmedia Group

.. raw:: html

   </span>

`Change.org <https://www.change.org>`_
--------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/change-logo.png
    :width: 120pt
    :target: https://www.change.org

.. raw:: html

  </div>

At change.org we automate the use of scikit-learn's RandomForestClassifier
in our production systems to drive email targeting that reaches millions
of users across the world each week. In the lab, scikit-learn's ease-of-use,
performance, and overall variety of algorithms implemented has proved invaluable
in giving us a single reliable source to turn to for our machine-learning needs.

.. raw:: html

   <span class="testimonial-author">

Vijay Ramesh, Software Engineer in Data/science at Change.org

.. raw:: html

   </span>

`PHIMECA Engineering <http://www.phimeca.com/?lang=en>`_
----------------------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/phimeca.png
    :width: 120pt
    :target: http://www.phimeca.com/?lang=en

.. raw:: html

  </div>

At PHIMECA Engineering, we use scikit-learn estimators as surrogates for
expensive-to-evaluate numerical models (mostly but not exclusively
finite-element mechanical models) for speeding up the intensive post-processing
operations involved in our simulation-based decision making framework.
Scikit-learn's fit/predict API together with its efficient cross-validation
tools considerably eases the task of selecting the best-fit estimator. We are
also using scikit-learn for illustrating concepts in our training sessions.
Trainees are always impressed by the ease-of-use of scikit-learn despite the
apparent theoretical complexity of machine learning.

.. raw:: html

   <span class="testimonial-author">

Vincent Dubourg, PHIMECA Engineering, PhD Engineer

.. raw:: html

   </span>

`HowAboutWe <http://www.howaboutwe.com/>`_
----------------------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/howaboutwe.png
    :width: 120pt
    :target: http://www.howaboutwe.com/

.. raw:: html

  </div>

At HowAboutWe, scikit-learn lets us implement a wide array of machine learning
techniques in analysis and in production, despite having a small team.  We use
scikit-learn’s classification algorithms to predict user behavior, enabling us
to (for example) estimate the value of leads from a given traffic source early
in the lead’s tenure on our site. Also, our users' profiles consist of
primarily unstructured data (answers to open-ended questions), so we use
scikit-learn’s feature extraction and dimensionality reduction tools to
translate these unstructured data into inputs for our matchmaking system.

.. raw:: html

   <span class="testimonial-author">

Daniel Weitzenfeld, Senior Data Scientist at HowAboutWe

.. raw:: html

   </span>


`PeerIndex <https://www.brandwatch.com/peerindex-and-brandwatch>`_
------------------------------------------------------------------

.. raw:: html

  <div class="logo">

.. image:: images/peerindex.png
    :width: 120pt
    :target: https://www.brandwatch.com/peerindex-and-brandwatch

.. raw:: html

  </div>

At PeerIndex we use scientific methodology to build the Influence Graph - a
unique dataset that allows us to identify who’s really influential and in which
context. To do this, we have to tackle a range of machine learning and
predictive modeling problems. Scikit-learn has emerged as our primary tool for
developing prototypes and making quick progress. From predicting missing data
and classifying tweets to clustering communities of social media users, scikit-
learn proved useful in a variety of applications. Its very intuitive interface
and excellent compatibility with other python tools makes it and indispensable
tool in our daily research efforts.

.. raw:: html

   <span class="testimonial-author">

Ferenc Huszar - Senior Data Scientist at Peerindex

.. raw:: html

   </span>


`DataRobot <https://www.datarobot.com>`_
----------------------------------------

.. raw:: html

    <div class="logo">

.. image:: images/datarobot.png
    :width: 120pt
    :target: https://www.datarobot.com

.. raw:: html

    </div>

DataRobot is building next generation predictive analytics software to make data scientists more productive, and scikit-learn is an integral part of our system. The variety of machine learning techniques in combination with the solid implementations that scikit-learn offers makes it a one-stop-shopping library for machine learning in Python. Moreover, its consistent API, well-tested code and permissive licensing allow us to use it in a production environment. Scikit-learn has literally saved us years of work we would have had to do ourselves to bring our product to market.

.. raw:: html

   <span class="testimonial-author">

Jeremy Achin, CEO & Co-founder DataRobot Inc.

.. raw:: html

   </span>


`OkCupid <https://www.okcupid.com/>`_
--------------------------------------

.. raw:: html

    <div class="logo">

.. image:: images/okcupid.png
    :width: 120pt
    :target: https://www.okcupid.com

.. raw:: html

    </div>

We're using scikit-learn at OkCupid to evaluate and improve our matchmaking
system. The range of features it has, especially preprocessing utilities, means
we can use it for a wide variety of projects, and it's performant enough to
handle the volume of data that we need to sort through. The documentation is
really thorough, as well, which makes the library quite easy to use.

.. raw:: html

   <span class="testimonial-author">

David Koh - Senior Data Scientist at OkCupid

.. raw:: html

   </span>
   

`Lovely <https://livelovely.com/>`_
-----------------------------------

.. raw:: html

    <div class="logo">

.. image:: images/lovely.png
    :width: 120pt
    :target: https://livelovely.com

.. raw:: html

    </div>

At Lovely, we strive to deliver the best apartment marketplace, with respect to
our users and our listings. From understanding user behavior, improving data
quality, and detecting fraud, scikit-learn is a regular tool for gathering
insights, predictive modeling and improving our product. The easy-to-read
documentation and intuitive architecture of the API makes machine learning both
explorable and accessible to a wide range of python developers. I'm constantly
recommending that more developers and scientists try scikit-learn.

.. raw:: html

   <span class="testimonial-author">

Simon Frid - Data Scientist, Lead at Lovely

.. raw:: html

   </span>



`Data Publica <http://www.data-publica.com/>`_
----------------------------------------------

.. raw:: html

    <div class="logo">

.. image:: images/datapublica.png
    :width: 120pt
    :target: http://www.data-publica.com/

.. raw:: html

    </div>

Data Publica builds a new predictive sales tool for commercial and marketing teams called C-Radar.
We extensively use scikit-learn to build segmentations of customers through clustering, and to predict future customers based on past partnerships success or failure.
We also categorize companies using their website communication thanks to scikit-learn and its machine learning algorithm implementations.
Eventually, machine learning makes it possible to detect weak signals that traditional tools cannot see.
All these complex tasks are performed in an easy and straightforward way thanks to the great quality of the scikit-learn framework.

.. raw:: html

   <span class="testimonial-author">

Guillaume Lebourgeois & Samuel Charron - Data Scientists at Data Publica

.. raw:: html

   </span>



`Machinalis <http://www.machinalis.com>`_
-----------------------------------------

.. raw:: html

   <div class="logo">

.. image:: images/machinalis.png
    :width: 120pt
    :target: http://www.machinalis.com

.. raw:: html

   </div>

Scikit-learn is the cornerstone of all the machine learning projects carried at
Machinalis. It has a consistent API, a wide selection of algorithms and lots
of auxiliary tools to deal with the boilerplate.
We have used it in production environments on a variety of projects
including click-through rate prediction, `information extraction <https://github.com/machinalis/iepy>`_,
and even counting sheep!

In fact, we use it so much that we've started to freeze our common use cases
into Python packages, some of them open-sourced, like
`FeatureForge <https://github.com/machinalis/featureforge>`_ .
Scikit-learn in one word: Awesome.

.. raw:: html

  <span class="testimonial-author">

Rafael Carrascosa, Lead developer


`solido <http://www.solidodesign.com/>`_
-----------------------------------------

.. raw:: html

   <div class="logo">

.. image:: images/solido_logo.png
    :width: 120pt
    :target: http://www.solidodesign.com

.. raw:: html

   </div>

Scikit-learn is helping to drive Moore’s Law, via Solido. Solido creates
computer-aided design tools used by the majority of top-20 semiconductor
companies and fabs, to design the bleeding-edge chips inside smartphones,
automobiles, and more. Scikit-learn helps to power Solido’s algorithms for
rare-event estimation, worst-case verification, optimization, and more. At
Solido, we are particularly fond of scikit-learn’s libraries for Gaussian
Process models, large-scale regularized linear regression, and classification.
Scikit-learn has increased our productivity, because for many ML problems we no
longer need to “roll our own” code. `This PyData 2014 talk <https://www.youtube.com/watch?v=Jm-eBD9xR3w>`_ has details.


.. raw:: html

  <span class="testimonial-author">

Trent McConaghy, founder, Solido Design Automation Inc.

.. raw:: html

  </span>



`INFONEA <http://www.infonea.com/en/>`_
-----------------------------------------

.. raw:: html

   <div class="logo">

.. image:: images/infonea.jpg
    :width: 120pt
    :target: http://www.infonea.com/en

.. raw:: html

   </div>

We employ scikit-learn for rapid prototyping and custom-made Data Science
solutions within our in-memory based Business Intelligence Software
INFONEA®. As a well-documented and comprehensive collection of
state-of-the-art algorithms and pipelining methods, scikit-learn enables
us to provide flexible and scalable scientific analysis solutions. Thus,
scikit-learn is immensely valuable in realizing a powerful integration of
Data Science technology within self-service business analytics.

.. raw:: html

  <span class="testimonial-author">

Thorsten Kranz, Data Scientist, Coma Soft AG.

.. raw:: html

  </span>


`Dataiku <http://www.dataiku.com/>`_
-----------------------------------------

.. raw:: html

   <div class="logo">

.. image:: images/dataiku_logo.png
    :width: 120pt
    :target: http://www.dataiku.com

.. raw:: html

   </div>

Our software, Data Science Studio (DSS), enables users to create data services 
that combine `ETL <https://en.wikipedia.org/wiki/Extract,_transform,_load>`_ with 
Machine Learning. Our Machine Learning module integrates 
many scikit-learn algorithms. The scikit-learn library is a perfect integration 
with DSS because it offers algorithms for virtually all business cases. Our goal 
is to offer a transparent and flexible tool that makes it easier to optimize 
time consuming aspects of building a data service, preparing data, and training 
machine learning algorithms on all types of data.


.. raw:: html

  <span class="testimonial-author">

Florian Douetteau, CEO, Dataiku

.. raw:: html

  </span>

`Otto Group <https://ottogroup.com/>`_
-----------------------------------------

.. raw:: html

   <div class="logo">

.. image:: images/ottogroup_logo.png
    :width: 120pt
    :target: https://ottogroup.com

.. raw:: html

   </div>

Here at Otto Group, one of global Big Five B2C online retailers, we are using
scikit-learn in all aspects of our daily work from data exploration to development
of machine learning application to the productive deployment of those services.
It helps us to tackle machine learning problems ranging from e-commerce to logistics.
It consistent APIs enabled us to build the `Palladium REST-API framework
<https://github.com/ottogroup/palladium/>`_ around it and continuously deliver
scikit-learn based services.


.. raw:: html

  <span class="testimonial-author">

Christian Rammig, Head of Data Science, Otto Group

.. raw:: html

  </span>