File: plot_label_propagation_digits_active_learning.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (99 lines) | stat: -rw-r--r-- 3,417 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
========================================
Label Propagation digits active learning
========================================

Demonstrates an active learning technique to learn handwritten digits
using label propagation.

We start by training a label propagation model with only 10 labeled points,
then we select the top five most uncertain points to label. Next, we train
with 15 labeled points (original 10 + 5 new ones). We repeat this process
four times to have a model trained with 30 labeled examples.

A plot will appear showing the top 5 most uncertain digits for each iteration
of training. These may or may not contain mistakes, but we will train the next
model with their true labels.
"""
print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 10

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()

for i in range(5):
    y_train = np.copy(y)
    y_train[unlabeled_indices] = -1

    lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
    lp_model.fit(X, y_train)

    predicted_labels = lp_model.transduction_[unlabeled_indices]
    true_labels = y[unlabeled_indices]

    cm = confusion_matrix(true_labels, predicted_labels,
                          labels=lp_model.classes_)

    print('Iteration %i %s' % (i, 70 * '_'))
    print("Label Spreading model: %d labeled & %d unlabeled (%d total)"
          % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

    print(classification_report(true_labels, predicted_labels))

    print("Confusion matrix")
    print(cm)

    # compute the entropies of transduced label distributions
    pred_entropies = stats.distributions.entropy(
        lp_model.label_distributions_.T)

    # select five digit examples that the classifier is most uncertain about
    uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:]

    # keep track of indices that we get labels for
    delete_indices = np.array([])

    f.text(.05, (1 - (i + 1) * .183),
           "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10)
    for index, image_index in enumerate(uncertainty_index):
        image = images[image_index]

        sub = f.add_subplot(5, 5, index + 1 + (5 * i))
        sub.imshow(image, cmap=plt.cm.gray_r)
        sub.set_title('predict: %i\ntrue: %i' % (
            lp_model.transduction_[image_index], y[image_index]), size=10)
        sub.axis('off')

        # labeling 5 points, remote from labeled set
        delete_index, = np.where(unlabeled_indices == image_index)
        delete_indices = np.concatenate((delete_indices, delete_index))

    unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
    n_labeled_points += 5

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
           "uncertain labels to learn with the next model.")
plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45)
plt.show()