File: cross_validation.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (1991 lines) | stat: -rw-r--r-- 69,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

"""
The :mod:`sklearn.cross_validation` module includes utilities for cross-
validation and performance evaluation.
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
#         Gael Varoquaux <gael.varoquaux@normalesup.org>,
#         Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

from __future__ import print_function
from __future__ import division

import warnings
from itertools import chain, combinations
from math import ceil, floor, factorial
import numbers
import time
from abc import ABCMeta, abstractmethod

import numpy as np
import scipy.sparse as sp

from .base import is_classifier, clone
from .utils import indexable, check_random_state, safe_indexing
from .utils.validation import (_is_arraylike, _num_samples,
                               column_or_1d)
from .utils.multiclass import type_of_target
from .utils.random import choice
from .externals.joblib import Parallel, delayed, logger
from .externals.six import with_metaclass
from .externals.six.moves import zip
from .metrics.scorer import check_scoring
from .utils.fixes import bincount
from .gaussian_process.kernels import Kernel as GPKernel
from .exceptions import FitFailedWarning


warnings.warn("This module was deprecated in version 0.18 in favor of the "
              "model_selection module into which all the refactored classes "
              "and functions are moved. Also note that the interface of the "
              "new CV iterators are different from that of this module. "
              "This module will be removed in 0.20.", DeprecationWarning)


__all__ = ['KFold',
           'LabelKFold',
           'LeaveOneLabelOut',
           'LeaveOneOut',
           'LeavePLabelOut',
           'LeavePOut',
           'ShuffleSplit',
           'StratifiedKFold',
           'StratifiedShuffleSplit',
           'PredefinedSplit',
           'LabelShuffleSplit',
           'check_cv',
           'cross_val_score',
           'cross_val_predict',
           'permutation_test_score',
           'train_test_split']


class _PartitionIterator(with_metaclass(ABCMeta)):
    """Base class for CV iterators where train_mask = ~test_mask

    Implementations must define `_iter_test_masks` or `_iter_test_indices`.

    Parameters
    ----------
    n : int
        Total number of elements in dataset.
    """

    def __init__(self, n):
        if abs(n - int(n)) >= np.finfo('f').eps:
            raise ValueError("n must be an integer")
        self.n = int(n)

    def __iter__(self):
        ind = np.arange(self.n)
        for test_index in self._iter_test_masks():
            train_index = np.logical_not(test_index)
            train_index = ind[train_index]
            test_index = ind[test_index]
            yield train_index, test_index

    # Since subclasses must implement either _iter_test_masks or
    # _iter_test_indices, neither can be abstract.
    def _iter_test_masks(self):
        """Generates boolean masks corresponding to test sets.

        By default, delegates to _iter_test_indices()
        """
        for test_index in self._iter_test_indices():
            test_mask = self._empty_mask()
            test_mask[test_index] = True
            yield test_mask

    def _iter_test_indices(self):
        """Generates integer indices corresponding to test sets."""
        raise NotImplementedError

    def _empty_mask(self):
        return np.zeros(self.n, dtype=np.bool)


class LeaveOneOut(_PartitionIterator):
    """Leave-One-Out cross validation iterator.

    Provides train/test indices to split data in train test sets. Each
    sample is used once as a test set (singleton) while the remaining
    samples form the training set.

    Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and
    ``LeavePOut(n, p=1)``.

    Due to the high number of test sets (which is the same as the
    number of samples) this cross validation method can be very costly.
    For large datasets one should favor KFold, StratifiedKFold or
    ShuffleSplit.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n : int
        Total number of elements in dataset.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4]])
    >>> y = np.array([1, 2])
    >>> loo = cross_validation.LeaveOneOut(2)
    >>> len(loo)
    2
    >>> print(loo)
    sklearn.cross_validation.LeaveOneOut(n=2)
    >>> for train_index, test_index in loo:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    ...    print(X_train, X_test, y_train, y_test)
    TRAIN: [1] TEST: [0]
    [[3 4]] [[1 2]] [2] [1]
    TRAIN: [0] TEST: [1]
    [[1 2]] [[3 4]] [1] [2]

    See also
    --------
    LeaveOneLabelOut for splitting the data according to explicit,
    domain-specific stratification of the dataset.
    """

    def _iter_test_indices(self):
        return range(self.n)

    def __repr__(self):
        return '%s.%s(n=%i)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
        )

    def __len__(self):
        return self.n


class LeavePOut(_PartitionIterator):
    """Leave-P-Out cross validation iterator

    Provides train/test indices to split data in train test sets. This results
    in testing on all distinct samples of size p, while the remaining n - p
    samples form the training set in each iteration.

    Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)``
    which creates non-overlapping test sets.

    Due to the high number of iterations which grows combinatorically with the
    number of samples this cross validation method can be very costly. For
    large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n : int
        Total number of elements in dataset.

    p : int
        Size of the test sets.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 3, 4])
    >>> lpo = cross_validation.LeavePOut(4, 2)
    >>> len(lpo)
    6
    >>> print(lpo)
    sklearn.cross_validation.LeavePOut(n=4, p=2)
    >>> for train_index, test_index in lpo:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [1 2] TEST: [0 3]
    TRAIN: [0 3] TEST: [1 2]
    TRAIN: [0 2] TEST: [1 3]
    TRAIN: [0 1] TEST: [2 3]
    """

    def __init__(self, n, p):
        super(LeavePOut, self).__init__(n)
        self.p = p

    def _iter_test_indices(self):
        for comb in combinations(range(self.n), self.p):
            yield np.array(comb)

    def __repr__(self):
        return '%s.%s(n=%i, p=%i)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
            self.p,
        )

    def __len__(self):
        return int(factorial(self.n) / factorial(self.n - self.p)
                   / factorial(self.p))


class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)):
    """Base class to validate KFold approaches"""

    @abstractmethod
    def __init__(self, n, n_folds, shuffle, random_state):
        super(_BaseKFold, self).__init__(n)

        if abs(n_folds - int(n_folds)) >= np.finfo('f').eps:
            raise ValueError("n_folds must be an integer")
        self.n_folds = n_folds = int(n_folds)

        if n_folds <= 1:
            raise ValueError(
                "k-fold cross validation requires at least one"
                " train / test split by setting n_folds=2 or more,"
                " got n_folds={0}.".format(n_folds))
        if n_folds > self.n:
            raise ValueError(
                ("Cannot have number of folds n_folds={0} greater"
                 " than the number of samples: {1}.").format(n_folds, n))

        if not isinstance(shuffle, bool):
            raise TypeError("shuffle must be True or False;"
                            " got {0}".format(shuffle))
        self.shuffle = shuffle
        self.random_state = random_state


class KFold(_BaseKFold):
    """K-Folds cross validation iterator.

    Provides train/test indices to split data in train test sets. Split
    dataset into k consecutive folds (without shuffling by default).

    Each fold is then used as a validation set once while the k - 1 remaining
    fold(s) form the training set.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n : int
        Total number of elements.

    n_folds : int, default=3
        Number of folds. Must be at least 2.

    shuffle : boolean, optional
        Whether to shuffle the data before splitting into batches.

    random_state : None, int or RandomState
        When shuffle=True, pseudo-random number generator state used for
        shuffling. If None, use default numpy RNG for shuffling.

    Examples
    --------
    >>> from sklearn.cross_validation import KFold
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([1, 2, 3, 4])
    >>> kf = KFold(4, n_folds=2)
    >>> len(kf)
    2
    >>> print(kf)  # doctest: +NORMALIZE_WHITESPACE
    sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,
                                   random_state=None)
    >>> for train_index, test_index in kf:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [0 1] TEST: [2 3]

    Notes
    -----
    The first n % n_folds folds have size n // n_folds + 1, other folds have
    size n // n_folds.

    See also
    --------
    StratifiedKFold take label information into account to avoid building
    folds with imbalanced class distributions (for binary or multiclass
    classification tasks).

    LabelKFold: K-fold iterator variant with non-overlapping labels.
    """

    def __init__(self, n, n_folds=3, shuffle=False,
                 random_state=None):
        super(KFold, self).__init__(n, n_folds, shuffle, random_state)
        self.idxs = np.arange(n)
        if shuffle:
            rng = check_random_state(self.random_state)
            rng.shuffle(self.idxs)

    def _iter_test_indices(self):
        n = self.n
        n_folds = self.n_folds
        fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int)
        fold_sizes[:n % n_folds] += 1
        current = 0
        for fold_size in fold_sizes:
            start, stop = current, current + fold_size
            yield self.idxs[start:stop]
            current = stop

    def __repr__(self):
        return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
            self.n_folds,
            self.shuffle,
            self.random_state,
        )

    def __len__(self):
        return self.n_folds


class LabelKFold(_BaseKFold):
    """K-fold iterator variant with non-overlapping labels.

    The same label will not appear in two different folds (the number of
    distinct labels has to be at least equal to the number of folds).

    The folds are approximately balanced in the sense that the number of
    distinct labels is approximately the same in each fold.

    .. versionadded:: 0.17

    Parameters
    ----------
    labels : array-like with shape (n_samples, )
        Contains a label for each sample.
        The folds are built so that the same label does not appear in two
        different folds.

    n_folds : int, default=3
        Number of folds. Must be at least 2.

    Examples
    --------
    >>> from sklearn.cross_validation import LabelKFold
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 3, 4])
    >>> labels = np.array([0, 0, 2, 2])
    >>> label_kfold = LabelKFold(labels, n_folds=2)
    >>> len(label_kfold)
    2
    >>> print(label_kfold)
    sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2)
    >>> for train_index, test_index in label_kfold:
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...     print(X_train, X_test, y_train, y_test)
    ...
    TRAIN: [0 1] TEST: [2 3]
    [[1 2]
     [3 4]] [[5 6]
     [7 8]] [1 2] [3 4]
    TRAIN: [2 3] TEST: [0 1]
    [[5 6]
     [7 8]] [[1 2]
     [3 4]] [3 4] [1 2]

    See also
    --------
    LeaveOneLabelOut for splitting the data according to explicit,
    domain-specific stratification of the dataset.
    """
    def __init__(self, labels, n_folds=3):
        super(LabelKFold, self).__init__(len(labels), n_folds,
                                         shuffle=False, random_state=None)

        unique_labels, labels = np.unique(labels, return_inverse=True)
        n_labels = len(unique_labels)

        if n_folds > n_labels:
            raise ValueError(
                ("Cannot have number of folds n_folds={0} greater"
                 " than the number of labels: {1}.").format(n_folds,
                                                            n_labels))

        # Weight labels by their number of occurrences
        n_samples_per_label = np.bincount(labels)

        # Distribute the most frequent labels first
        indices = np.argsort(n_samples_per_label)[::-1]
        n_samples_per_label = n_samples_per_label[indices]

        # Total weight of each fold
        n_samples_per_fold = np.zeros(n_folds)

        # Mapping from label index to fold index
        label_to_fold = np.zeros(len(unique_labels))

        # Distribute samples by adding the largest weight to the lightest fold
        for label_index, weight in enumerate(n_samples_per_label):
            lightest_fold = np.argmin(n_samples_per_fold)
            n_samples_per_fold[lightest_fold] += weight
            label_to_fold[indices[label_index]] = lightest_fold

        self.idxs = label_to_fold[labels]

    def _iter_test_indices(self):
        for f in range(self.n_folds):
            yield np.where(self.idxs == f)[0]

    def __repr__(self):
        return '{0}.{1}(n_labels={2}, n_folds={3})'.format(
            self.__class__.__module__,
            self.__class__.__name__,
            self.n,
            self.n_folds,
        )

    def __len__(self):
        return self.n_folds


class StratifiedKFold(_BaseKFold):
    """Stratified K-Folds cross validation iterator

    Provides train/test indices to split data in train test sets.

    This cross-validation object is a variation of KFold that
    returns stratified folds. The folds are made by preserving
    the percentage of samples for each class.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    y : array-like, [n_samples]
        Samples to split in K folds.

    n_folds : int, default=3
        Number of folds. Must be at least 2.

    shuffle : boolean, optional
        Whether to shuffle each stratification of the data before splitting
        into batches.

    random_state : None, int or RandomState
        When shuffle=True, pseudo-random number generator state used for
        shuffling. If None, use default numpy RNG for shuffling.

    Examples
    --------
    >>> from sklearn.cross_validation import StratifiedKFold
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> skf = StratifiedKFold(y, n_folds=2)
    >>> len(skf)
    2
    >>> print(skf)  # doctest: +NORMALIZE_WHITESPACE
    sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2,
                                             shuffle=False, random_state=None)
    >>> for train_index, test_index in skf:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [0 2] TEST: [1 3]

    Notes
    -----
    All the folds have size trunc(n_samples / n_folds), the last one has the
    complementary.

    See also
    --------
    LabelKFold: K-fold iterator variant with non-overlapping labels.
    """

    def __init__(self, y, n_folds=3, shuffle=False,
                 random_state=None):
        super(StratifiedKFold, self).__init__(
            len(y), n_folds, shuffle, random_state)
        y = np.asarray(y)
        n_samples = y.shape[0]
        unique_labels, y_inversed = np.unique(y, return_inverse=True)
        label_counts = bincount(y_inversed)
        min_labels = np.min(label_counts)
        if np.all(self.n_folds > label_counts):
            raise ValueError("All the n_labels for individual classes"
                             " are less than %d folds."
                             % (self.n_folds))
        if self.n_folds > min_labels:
            warnings.warn(("The least populated class in y has only %d"
                           " members, which is too few. The minimum"
                           " number of labels for any class cannot"
                           " be less than n_folds=%d."
                           % (min_labels, self.n_folds)), Warning)

        # don't want to use the same seed in each label's shuffle
        if self.shuffle:
            rng = check_random_state(self.random_state)
        else:
            rng = self.random_state

        # pre-assign each sample to a test fold index using individual KFold
        # splitting strategies for each label so as to respect the
        # balance of labels
        per_label_cvs = [
            KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle,
                  random_state=rng) for c in label_counts]
        test_folds = np.zeros(n_samples, dtype=np.int)
        for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)):
            for label, (_, test_split) in zip(unique_labels, per_label_splits):
                label_test_folds = test_folds[y == label]
                # the test split can be too big because we used
                # KFold(max(c, self.n_folds), self.n_folds) instead of
                # KFold(c, self.n_folds) to make it possible to not crash even
                # if the data is not 100% stratifiable for all the labels
                # (we use a warning instead of raising an exception)
                # If this is the case, let's trim it:
                test_split = test_split[test_split < len(label_test_folds)]
                label_test_folds[test_split] = test_fold_idx
                test_folds[y == label] = label_test_folds

        self.test_folds = test_folds
        self.y = y

    def _iter_test_masks(self):
        for i in range(self.n_folds):
            yield self.test_folds == i

    def __repr__(self):
        return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.y,
            self.n_folds,
            self.shuffle,
            self.random_state,
        )

    def __len__(self):
        return self.n_folds


class LeaveOneLabelOut(_PartitionIterator):
    """Leave-One-Label_Out cross-validation iterator

    Provides train/test indices to split data according to a third-party
    provided label. This label information can be used to encode arbitrary
    domain specific stratifications of the samples as integers.

    For instance the labels could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    labels : array-like of int with shape (n_samples,)
        Arbitrary domain-specific stratification of the data to be used
        to draw the splits.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 1, 2])
    >>> labels = np.array([1, 1, 2, 2])
    >>> lol = cross_validation.LeaveOneLabelOut(labels)
    >>> len(lol)
    2
    >>> print(lol)
    sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2])
    >>> for train_index, test_index in lol:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    ...    print(X_train, X_test, y_train, y_test)
    TRAIN: [2 3] TEST: [0 1]
    [[5 6]
     [7 8]] [[1 2]
     [3 4]] [1 2] [1 2]
    TRAIN: [0 1] TEST: [2 3]
    [[1 2]
     [3 4]] [[5 6]
     [7 8]] [1 2] [1 2]

    See also
    --------
    LabelKFold: K-fold iterator variant with non-overlapping labels.
    """

    def __init__(self, labels):
        super(LeaveOneLabelOut, self).__init__(len(labels))
        # We make a copy of labels to avoid side-effects during iteration
        self.labels = np.array(labels, copy=True)
        self.unique_labels = np.unique(labels)
        self.n_unique_labels = len(self.unique_labels)

    def _iter_test_masks(self):
        for i in self.unique_labels:
            yield self.labels == i

    def __repr__(self):
        return '%s.%s(labels=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.labels,
        )

    def __len__(self):
        return self.n_unique_labels


class LeavePLabelOut(_PartitionIterator):
    """Leave-P-Label_Out cross-validation iterator

    Provides train/test indices to split data according to a third-party
    provided label. This label information can be used to encode arbitrary
    domain specific stratifications of the samples as integers.

    For instance the labels could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    The difference between LeavePLabelOut and LeaveOneLabelOut is that
    the former builds the test sets with all the samples assigned to
    ``p`` different values of the labels while the latter uses samples
    all assigned the same labels.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    labels : array-like of int with shape (n_samples,)
        Arbitrary domain-specific stratification of the data to be used
        to draw the splits.

    p : int
        Number of samples to leave out in the test split.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> X = np.array([[1, 2], [3, 4], [5, 6]])
    >>> y = np.array([1, 2, 1])
    >>> labels = np.array([1, 2, 3])
    >>> lpl = cross_validation.LeavePLabelOut(labels, p=2)
    >>> len(lpl)
    3
    >>> print(lpl)
    sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2)
    >>> for train_index, test_index in lpl:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    ...    print(X_train, X_test, y_train, y_test)
    TRAIN: [2] TEST: [0 1]
    [[5 6]] [[1 2]
     [3 4]] [1] [1 2]
    TRAIN: [1] TEST: [0 2]
    [[3 4]] [[1 2]
     [5 6]] [2] [1 1]
    TRAIN: [0] TEST: [1 2]
    [[1 2]] [[3 4]
     [5 6]] [1] [2 1]

    See also
    --------
    LabelKFold: K-fold iterator variant with non-overlapping labels.
    """

    def __init__(self, labels, p):
        # We make a copy of labels to avoid side-effects during iteration
        super(LeavePLabelOut, self).__init__(len(labels))
        self.labels = np.array(labels, copy=True)
        self.unique_labels = np.unique(labels)
        self.n_unique_labels = len(self.unique_labels)
        self.p = p

    def _iter_test_masks(self):
        comb = combinations(range(self.n_unique_labels), self.p)
        for idx in comb:
            test_index = self._empty_mask()
            idx = np.array(idx)
            for l in self.unique_labels[idx]:
                test_index[self.labels == l] = True
            yield test_index

    def __repr__(self):
        return '%s.%s(labels=%s, p=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.labels,
            self.p,
        )

    def __len__(self):
        return int(factorial(self.n_unique_labels) /
                   factorial(self.n_unique_labels - self.p) /
                   factorial(self.p))


class BaseShuffleSplit(with_metaclass(ABCMeta)):
    """Base class for ShuffleSplit and StratifiedShuffleSplit"""

    def __init__(self, n, n_iter=10, test_size=0.1, train_size=None,
                 random_state=None):
        self.n = n
        self.n_iter = n_iter
        self.test_size = test_size
        self.train_size = train_size
        self.random_state = random_state
        self.n_train, self.n_test = _validate_shuffle_split(n, test_size,
                                                            train_size)

    def __iter__(self):
        for train, test in self._iter_indices():
            yield train, test
        return

    @abstractmethod
    def _iter_indices(self):
        """Generate (train, test) indices"""


class ShuffleSplit(BaseShuffleSplit):
    """Random permutation cross-validation iterator.

    Yields indices to split data into training and test sets.

    Note: contrary to other cross-validation strategies, random splits
    do not guarantee that all folds will be different, although this is
    still very likely for sizeable datasets.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n : int
        Total number of elements in the dataset.

    n_iter : int (default 10)
        Number of re-shuffling & splitting iterations.

    test_size : float (default 0.1), int, or None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split. If
        int, represents the absolute number of test samples. If None,
        the value is automatically set to the complement of the train size.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    Examples
    --------
    >>> from sklearn import cross_validation
    >>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
    ...     test_size=.25, random_state=0)
    >>> len(rs)
    3
    >>> print(rs)
    ... # doctest: +ELLIPSIS
    ShuffleSplit(4, n_iter=3, test_size=0.25, ...)
    >>> for train_index, test_index in rs:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...
    TRAIN: [3 1 0] TEST: [2]
    TRAIN: [2 1 3] TEST: [0]
    TRAIN: [0 2 1] TEST: [3]

    >>> rs = cross_validation.ShuffleSplit(4, n_iter=3,
    ...     train_size=0.5, test_size=.25, random_state=0)
    >>> for train_index, test_index in rs:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...
    TRAIN: [3 1] TEST: [2]
    TRAIN: [2 1] TEST: [0]
    TRAIN: [0 2] TEST: [3]

    """

    def _iter_indices(self):
        rng = check_random_state(self.random_state)
        for i in range(self.n_iter):
            # random partition
            permutation = rng.permutation(self.n)
            ind_test = permutation[:self.n_test]
            ind_train = permutation[self.n_test:self.n_test + self.n_train]
            yield ind_train, ind_test

    def __repr__(self):
        return ('%s(%d, n_iter=%d, test_size=%s, '
                'random_state=%s)' % (
                    self.__class__.__name__,
                    self.n,
                    self.n_iter,
                    str(self.test_size),
                    self.random_state,
                ))

    def __len__(self):
        return self.n_iter


def _validate_shuffle_split(n, test_size, train_size):
    if test_size is None and train_size is None:
        raise ValueError(
            'test_size and train_size can not both be None')

    if test_size is not None:
        if np.asarray(test_size).dtype.kind == 'f':
            if test_size >= 1.:
                raise ValueError(
                    'test_size=%f should be smaller '
                    'than 1.0 or be an integer' % test_size)
        elif np.asarray(test_size).dtype.kind == 'i':
            if test_size >= n:
                raise ValueError(
                    'test_size=%d should be smaller '
                    'than the number of samples %d' % (test_size, n))
        else:
            raise ValueError("Invalid value for test_size: %r" % test_size)

    if train_size is not None:
        if np.asarray(train_size).dtype.kind == 'f':
            if train_size >= 1.:
                raise ValueError("train_size=%f should be smaller "
                                 "than 1.0 or be an integer" % train_size)
            elif np.asarray(test_size).dtype.kind == 'f' and \
                    train_size + test_size > 1.:
                raise ValueError('The sum of test_size and train_size = %f, '
                                 'should be smaller than 1.0. Reduce '
                                 'test_size and/or train_size.' %
                                 (train_size + test_size))
        elif np.asarray(train_size).dtype.kind == 'i':
            if train_size >= n:
                raise ValueError("train_size=%d should be smaller "
                                 "than the number of samples %d" %
                                 (train_size, n))
        else:
            raise ValueError("Invalid value for train_size: %r" % train_size)

    if np.asarray(test_size).dtype.kind == 'f':
        n_test = ceil(test_size * n)
    elif np.asarray(test_size).dtype.kind == 'i':
        n_test = float(test_size)

    if train_size is None:
        n_train = n - n_test
    else:
        if np.asarray(train_size).dtype.kind == 'f':
            n_train = floor(train_size * n)
        else:
            n_train = float(train_size)

    if test_size is None:
        n_test = n - n_train

    if n_train + n_test > n:
        raise ValueError('The sum of train_size and test_size = %d, '
                         'should be smaller than the number of '
                         'samples %d. Reduce test_size and/or '
                         'train_size.' % (n_train + n_test, n))

    return int(n_train), int(n_test)


def _approximate_mode(class_counts, n_draws, rng):
    """Computes approximate mode of multivariate hypergeometric.

    This is an approximation to the mode of the multivariate
    hypergeometric given by class_counts and n_draws.
    It shouldn't be off by more than one.

    It is the mostly likely outcome of drawing n_draws many
    samples from the population given by class_counts.

    Parameters
    ----------
    class_counts : ndarray of int
        Population per class.
    n_draws : int
        Number of draws (samples to draw) from the overall population.
    rng : random state
        Used to break ties.

    Returns
    -------
    sampled_classes : ndarray of int
        Number of samples drawn from each class.
        np.sum(sampled_classes) == n_draws
    """
    # this computes a bad approximation to the mode of the
    # multivariate hypergeometric given by class_counts and n_draws
    continuous = n_draws * class_counts / class_counts.sum()
    # floored means we don't overshoot n_samples, but probably undershoot
    floored = np.floor(continuous)
    # we add samples according to how much "left over" probability
    # they had, until we arrive at n_samples
    need_to_add = int(n_draws - floored.sum())
    if need_to_add > 0:
        remainder = continuous - floored
        values = np.sort(np.unique(remainder))[::-1]
        # add according to remainder, but break ties
        # randomly to avoid biases
        for value in values:
            inds, = np.where(remainder == value)
            # if we need_to_add less than what's in inds
            # we draw randomly from them.
            # if we need to add more, we add them all and
            # go to the next value
            add_now = min(len(inds), need_to_add)
            inds = choice(inds, size=add_now, replace=False, random_state=rng)
            floored[inds] += 1
            need_to_add -= add_now
            if need_to_add == 0:
                    break
    return floored.astype(np.int)


class StratifiedShuffleSplit(BaseShuffleSplit):
    """Stratified ShuffleSplit cross validation iterator

    Provides train/test indices to split data in train test sets.

    This cross-validation object is a merge of StratifiedKFold and
    ShuffleSplit, which returns stratified randomized folds. The folds
    are made by preserving the percentage of samples for each class.

    Note: like the ShuffleSplit strategy, stratified random splits
    do not guarantee that all folds will be different, although this is
    still very likely for sizeable datasets.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    y : array, [n_samples]
        Labels of samples.

    n_iter : int (default 10)
        Number of re-shuffling & splitting iterations.

    test_size : float (default 0.1), int, or None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split. If
        int, represents the absolute number of test samples. If None,
        the value is automatically set to the complement of the train size.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    Examples
    --------
    >>> from sklearn.cross_validation import StratifiedShuffleSplit
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0)
    >>> len(sss)
    3
    >>> print(sss)       # doctest: +ELLIPSIS
    StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...)
    >>> for train_index, test_index in sss:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 2] TEST: [3 0]
    TRAIN: [0 2] TEST: [1 3]
    TRAIN: [0 2] TEST: [3 1]
    """

    def __init__(self, y, n_iter=10, test_size=0.1, train_size=None,
                 random_state=None):

        super(StratifiedShuffleSplit, self).__init__(
            len(y), n_iter, test_size, train_size, random_state)

        self.y = np.array(y)
        self.classes, self.y_indices = np.unique(y, return_inverse=True)
        n_cls = self.classes.shape[0]

        if np.min(bincount(self.y_indices)) < 2:
            raise ValueError("The least populated class in y has only 1"
                             " member, which is too few. The minimum"
                             " number of labels for any class cannot"
                             " be less than 2.")

        if self.n_train < n_cls:
            raise ValueError('The train_size = %d should be greater or '
                             'equal to the number of classes = %d' %
                             (self.n_train, n_cls))
        if self.n_test < n_cls:
            raise ValueError('The test_size = %d should be greater or '
                             'equal to the number of classes = %d' %
                             (self.n_test, n_cls))

    def _iter_indices(self):
        rng = check_random_state(self.random_state)
        cls_count = bincount(self.y_indices)

        for n in range(self.n_iter):
            # if there are ties in the class-counts, we want
            # to make sure to break them anew in each iteration
            n_i = _approximate_mode(cls_count, self.n_train, rng)
            class_counts_remaining = cls_count - n_i
            t_i = _approximate_mode(class_counts_remaining, self.n_test, rng)

            train = []
            test = []

            for i, _ in enumerate(self.classes):
                permutation = rng.permutation(cls_count[i])
                perm_indices_class_i = np.where(
                    (i == self.y_indices))[0][permutation]

                train.extend(perm_indices_class_i[:n_i[i]])
                test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]])
            train = rng.permutation(train)
            test = rng.permutation(test)

            yield train, test

    def __repr__(self):
        return ('%s(labels=%s, n_iter=%d, test_size=%s, '
                'random_state=%s)' % (
                    self.__class__.__name__,
                    self.y,
                    self.n_iter,
                    str(self.test_size),
                    self.random_state,
                ))

    def __len__(self):
        return self.n_iter


class PredefinedSplit(_PartitionIterator):
    """Predefined split cross validation iterator

    Splits the data into training/test set folds according to a predefined
    scheme. Each sample can be assigned to at most one test set fold, as
    specified by the user through the ``test_fold`` parameter.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    test_fold : "array-like, shape (n_samples,)
        test_fold[i] gives the test set fold of sample i. A value of -1
        indicates that the corresponding sample is not part of any test set
        folds, but will instead always be put into the training fold.

    Examples
    --------
    >>> from sklearn.cross_validation import PredefinedSplit
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1])
    >>> len(ps)
    2
    >>> print(ps)       # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    sklearn.cross_validation.PredefinedSplit(test_fold=[ 0  1 -1  1])
    >>> for train_index, test_index in ps:
    ...    print("TRAIN:", train_index, "TEST:", test_index)
    ...    X_train, X_test = X[train_index], X[test_index]
    ...    y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 2 3] TEST: [0]
    TRAIN: [0 2] TEST: [1 3]
    """

    def __init__(self, test_fold):
        super(PredefinedSplit, self).__init__(len(test_fold))
        self.test_fold = np.array(test_fold, dtype=np.int)
        self.test_fold = column_or_1d(self.test_fold)
        self.unique_folds = np.unique(self.test_fold)
        self.unique_folds = self.unique_folds[self.unique_folds != -1]

    def _iter_test_indices(self):
        for f in self.unique_folds:
            yield np.where(self.test_fold == f)[0]

    def __repr__(self):
        return '%s.%s(test_fold=%s)' % (
            self.__class__.__module__,
            self.__class__.__name__,
            self.test_fold)

    def __len__(self):
        return len(self.unique_folds)


class LabelShuffleSplit(ShuffleSplit):
    """Shuffle-Labels-Out cross-validation iterator

    Provides randomized train/test indices to split data according to a
    third-party provided label. This label information can be used to encode
    arbitrary domain specific stratifications of the samples as integers.

    For instance the labels could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    The difference between LeavePLabelOut and LabelShuffleSplit is that
    the former generates splits using all subsets of size ``p`` unique labels,
    whereas LabelShuffleSplit generates a user-determined number of random
    test splits, each with a user-determined fraction of unique labels.

    For example, a less computationally intensive alternative to
    ``LeavePLabelOut(labels, p=10)`` would be
    ``LabelShuffleSplit(labels, test_size=10, n_iter=100)``.

    Note: The parameters ``test_size`` and ``train_size`` refer to labels, and
    not to samples, as in ShuffleSplit.

    .. versionadded:: 0.17

    Parameters
    ----------
    labels :  array, [n_samples]
        Labels of samples

    n_iter : int (default 5)
        Number of re-shuffling and splitting iterations.

    test_size : float (default 0.2), int, or None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the labels to include in the test split. If
        int, represents the absolute number of test labels. If None,
        the value is automatically set to the complement of the train size.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the labels to include in the train split. If
        int, represents the absolute number of train labels. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    """
    def __init__(self, labels, n_iter=5, test_size=0.2, train_size=None,
                 random_state=None):

        classes, label_indices = np.unique(labels, return_inverse=True)

        super(LabelShuffleSplit, self).__init__(
            len(classes),
            n_iter=n_iter,
            test_size=test_size,
            train_size=train_size,
            random_state=random_state)

        self.labels = labels
        self.classes = classes
        self.label_indices = label_indices

    def __repr__(self):
        return ('%s(labels=%s, n_iter=%d, test_size=%s, '
                'random_state=%s)' % (
                    self.__class__.__name__,
                    self.labels,
                    self.n_iter,
                    str(self.test_size),
                    self.random_state,
                ))

    def __len__(self):
        return self.n_iter

    def _iter_indices(self):
        for label_train, label_test in super(LabelShuffleSplit,
                                             self)._iter_indices():
            # these are the indices of classes in the partition
            # invert them into data indices

            train = np.flatnonzero(np.in1d(self.label_indices, label_train))
            test = np.flatnonzero(np.in1d(self.label_indices, label_test))

            yield train, test


##############################################################################
def _index_param_value(X, v, indices):
    """Private helper function for parameter value indexing."""
    if not _is_arraylike(v) or _num_samples(v) != _num_samples(X):
        # pass through: skip indexing
        return v
    if sp.issparse(v):
        v = v.tocsr()
    return safe_indexing(v, indices)


def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1,
                      verbose=0, fit_params=None, pre_dispatch='2*n_jobs'):
    """Generate cross-validated estimates for each input data point

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be, for example a list, or an array at least 2d.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross-validation,
        - integer, to specify the number of folds.
        - An object to be used as a cross-validation generator.
        - An iterable yielding train/test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    Returns
    -------
    preds : ndarray
        This is the result of calling 'predict'

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.cross_validation import cross_val_predict
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> y_pred = cross_val_predict(lasso, X, y)
    """
    X, y = indexable(X, y)

    cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y,
                                                      train, test, verbose,
                                                      fit_params)
                            for train, test in cv)

    preds = [p for p, _ in preds_blocks]
    locs = np.concatenate([loc for _, loc in preds_blocks])
    if not _check_is_partition(locs, _num_samples(X)):
        raise ValueError('cross_val_predict only works for partitions')
    inv_locs = np.empty(len(locs), dtype=int)
    inv_locs[locs] = np.arange(len(locs))

    # Check for sparse predictions
    if sp.issparse(preds[0]):
        preds = sp.vstack(preds, format=preds[0].format)
    else:
        preds = np.concatenate(preds)
    return preds[inv_locs]


def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params):
    """Fit estimator and predict values for a given dataset split.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    train : array-like, shape (n_train_samples,)
        Indices of training samples.

    test : array-like, shape (n_test_samples,)
        Indices of test samples.

    verbose : integer
        The verbosity level.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    Returns
    -------
    preds : sequence
        Result of calling 'estimator.predict'

    test : array-like
        This is the value of the test parameter
    """
    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = dict([(k, _index_param_value(X, v, train))
                      for k, v in fit_params.items()])

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, _ = _safe_split(estimator, X, y, test, train)

    if y_train is None:
        estimator.fit(X_train, **fit_params)
    else:
        estimator.fit(X_train, y_train, **fit_params)
    preds = estimator.predict(X_test)
    return preds, test


def _check_is_partition(locs, n):
    """Check whether locs is a reordering of the array np.arange(n)

    Parameters
    ----------
    locs : ndarray
        integer array to test
    n : int
        number of expected elements

    Returns
    -------
    is_partition : bool
        True iff sorted(locs) is range(n)
    """
    if len(locs) != n:
        return False
    hit = np.zeros(n, bool)
    hit[locs] = True
    if not np.all(hit):
        return False
    return True


def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1,
                    verbose=0, fit_params=None, pre_dispatch='2*n_jobs'):
    """Evaluate a score by cross-validation

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be, for example a list, or an array at least 2d.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross-validation,
        - integer, to specify the number of folds.
        - An object to be used as a cross-validation generator.
        - An iterable yielding train/test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    Returns
    -------
    scores : array of float, shape=(len(list(cv)),)
        Array of scores of the estimator for each run of the cross validation.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.cross_validation import cross_val_score
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> print(cross_val_score(lasso, X, y))  # doctest:  +ELLIPSIS
    [ 0.33150734  0.08022311  0.03531764]

    See Also
    ---------
    :func:`sklearn.metrics.make_scorer`:
        Make a scorer from a performance metric or loss function.

    """
    X, y = indexable(X, y)

    cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)
    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer,
                                              train, test, verbose, None,
                                              fit_params)
                      for train, test in cv)
    return np.array(scores)[:, 0]


def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
                   parameters, fit_params, return_train_score=False,
                   return_parameters=False, error_score='raise'):
    """Fit estimator and compute scores for a given dataset split.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    scorer : callable
        A scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    train : array-like, shape (n_train_samples,)
        Indices of training samples.

    test : array-like, shape (n_test_samples,)
        Indices of test samples.

    verbose : integer
        The verbosity level.

    error_score : 'raise' (default) or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised. If a numeric value is given,
        FitFailedWarning is raised. This parameter does not affect the refit
        step, which will always raise the error.

    parameters : dict or None
        Parameters to be set on the estimator.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    return_train_score : boolean, optional, default: False
        Compute and return score on training set.

    return_parameters : boolean, optional, default: False
        Return parameters that has been used for the estimator.

    Returns
    -------
    train_score : float, optional
        Score on training set, returned only if `return_train_score` is `True`.

    test_score : float
        Score on test set.

    n_test_samples : int
        Number of test samples.

    scoring_time : float
        Time spent for fitting and scoring in seconds.

    parameters : dict or None, optional
        The parameters that have been evaluated.
    """
    if verbose > 1:
        if parameters is None:
            msg = ''
        else:
            msg = '%s' % (', '.join('%s=%s' % (k, v)
                          for k, v in parameters.items()))
        print("[CV] %s %s" % (msg, (64 - len(msg)) * '.'))

    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = dict([(k, _index_param_value(X, v, train))
                      for k, v in fit_params.items()])

    if parameters is not None:
        estimator.set_params(**parameters)

    start_time = time.time()

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, y_test = _safe_split(estimator, X, y, test, train)

    try:
        if y_train is None:
            estimator.fit(X_train, **fit_params)
        else:
            estimator.fit(X_train, y_train, **fit_params)

    except Exception as e:
        if error_score == 'raise':
            raise
        elif isinstance(error_score, numbers.Number):
            test_score = error_score
            if return_train_score:
                train_score = error_score
            warnings.warn("Classifier fit failed. The score on this train-test"
                          " partition for these parameters will be set to %f. "
                          "Details: \n%r" % (error_score, e), FitFailedWarning)
        else:
            raise ValueError("error_score must be the string 'raise' or a"
                             " numeric value. (Hint: if using 'raise', please"
                             " make sure that it has been spelled correctly.)"
                             )

    else:
        test_score = _score(estimator, X_test, y_test, scorer)
        if return_train_score:
            train_score = _score(estimator, X_train, y_train, scorer)

    scoring_time = time.time() - start_time

    if verbose > 2:
        msg += ", score=%f" % test_score
    if verbose > 1:
        end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time))
        print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg))

    ret = [train_score] if return_train_score else []
    ret.extend([test_score, _num_samples(X_test), scoring_time])
    if return_parameters:
        ret.append(parameters)
    return ret


def _safe_split(estimator, X, y, indices, train_indices=None):
    """Create subset of dataset and properly handle kernels."""
    if hasattr(estimator, 'kernel') and callable(estimator.kernel) \
       and not isinstance(estimator.kernel, GPKernel):
        # cannot compute the kernel values with custom function
        raise ValueError("Cannot use a custom kernel function. "
                         "Precompute the kernel matrix instead.")

    if not hasattr(X, "shape"):
        if getattr(estimator, "_pairwise", False):
            raise ValueError("Precomputed kernels or affinity matrices have "
                             "to be passed as arrays or sparse matrices.")
        X_subset = [X[idx] for idx in indices]
    else:
        if getattr(estimator, "_pairwise", False):
            # X is a precomputed square kernel matrix
            if X.shape[0] != X.shape[1]:
                raise ValueError("X should be a square kernel matrix")
            if train_indices is None:
                X_subset = X[np.ix_(indices, indices)]
            else:
                X_subset = X[np.ix_(indices, train_indices)]
        else:
            X_subset = safe_indexing(X, indices)

    if y is not None:
        y_subset = safe_indexing(y, indices)
    else:
        y_subset = None

    return X_subset, y_subset


def _score(estimator, X_test, y_test, scorer):
    """Compute the score of an estimator on a given test set."""
    if y_test is None:
        score = scorer(estimator, X_test)
    else:
        score = scorer(estimator, X_test, y_test)
    if hasattr(score, 'item'):
        try:
            # e.g. unwrap memmapped scalars
            score = score.item()
        except ValueError:
            # non-scalar?
            pass
    if not isinstance(score, numbers.Number):
        raise ValueError("scoring must return a number, got %s (%s) instead."
                         % (str(score), type(score)))
    return score


def _permutation_test_score(estimator, X, y, cv, scorer):
    """Auxiliary function for permutation_test_score"""
    avg_score = []
    for train, test in cv:
        estimator.fit(X[train], y[train])
        avg_score.append(scorer(estimator, X[test], y[test]))
    return np.mean(avg_score)


def _shuffle(y, labels, random_state):
    """Return a shuffled copy of y eventually shuffle among same labels."""
    if labels is None:
        ind = random_state.permutation(len(y))
    else:
        ind = np.arange(len(labels))
        for label in np.unique(labels):
            this_mask = (labels == label)
            ind[this_mask] = random_state.permutation(ind[this_mask])
    return y[ind]


def check_cv(cv, X=None, y=None, classifier=False):
    """Input checker utility for building a CV in a user friendly way.

    Parameters
    ----------
    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross-validation,
        - integer, to specify the number of folds.
        - An object to be used as a cross-validation generator.
        - An iterable yielding train/test splits.

        For integer/None inputs, if classifier is True and ``y`` is binary or
        multiclass, :class:`StratifiedKFold` is used. In all other cases,
        :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    X : array-like
        The data the cross-val object will be applied on.

    y : array-like
        The target variable for a supervised learning problem.

    classifier : boolean optional
        Whether the task is a classification task, in which case
        stratified KFold will be used.

    Returns
    -------
    checked_cv: a cross-validation generator instance.
        The return value is guaranteed to be a cv generator instance, whatever
        the input type.
    """
    is_sparse = sp.issparse(X)
    if cv is None:
        cv = 3
    if isinstance(cv, numbers.Integral):
        if classifier:
            if type_of_target(y) in ['binary', 'multiclass']:
                cv = StratifiedKFold(y, cv)
            else:
                cv = KFold(_num_samples(y), cv)
        else:
            if not is_sparse:
                n_samples = len(X)
            else:
                n_samples = X.shape[0]
            cv = KFold(n_samples, cv)
    return cv


def permutation_test_score(estimator, X, y, cv=None,
                           n_permutations=100, n_jobs=1, labels=None,
                           random_state=0, verbose=0, scoring=None):
    """Evaluate the significance of a cross-validated score with permutations

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like
        The target variable to try to predict in the case of
        supervised learning.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross-validation,
        - integer, to specify the number of folds.
        - An object to be used as a cross-validation generator.
        - An iterable yielding train/test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_permutations : integer, optional
        Number of times to permute ``y``.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    labels : array-like of shape [n_samples] (optional)
        Labels constrain the permutation among groups of samples with
        a same label.

    random_state : RandomState or an int seed (0 by default)
        A random number generator instance to define the state of the
        random permutations generator.

    verbose : integer, optional
        The verbosity level.

    Returns
    -------
    score : float
        The true score without permuting targets.

    permutation_scores : array, shape (n_permutations,)
        The scores obtained for each permutations.

    pvalue : float
        The returned value equals p-value if `scoring` returns bigger
        numbers for better scores (e.g., accuracy_score). If `scoring` is
        rather a loss function (i.e. when lower is better such as with
        `mean_squared_error`) then this is actually the complement of the
        p-value:  1 - p-value.

    Notes
    -----
    This function implements Test 1 in:

        Ojala and Garriga. Permutation Tests for Studying Classifier
        Performance.  The Journal of Machine Learning Research (2010)
        vol. 11

    """
    X, y = indexable(X, y)
    cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)
    random_state = check_random_state(random_state)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    score = _permutation_test_score(clone(estimator), X, y, cv, scorer)
    permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(_permutation_test_score)(
            clone(estimator), X, _shuffle(y, labels, random_state), cv,
            scorer)
        for _ in range(n_permutations))
    permutation_scores = np.array(permutation_scores)
    pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
    return score, permutation_scores, pvalue


permutation_test_score.__test__ = False  # to avoid a pb with nosetests


def train_test_split(*arrays, **options):
    """Split arrays or matrices into random train and test subsets

    Quick utility that wraps input validation and
    ``next(iter(ShuffleSplit(n_samples)))`` and application to input
    data into a single call for splitting (and optionally subsampling)
    data in a oneliner.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    *arrays : sequence of indexables with same length / shape[0]
        Allowed inputs are lists, numpy arrays, scipy-sparse
        matrices or pandas dataframes.

    test_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the test split. If
        int, represents the absolute number of test samples. If None,
        the value is automatically set to the complement of the train size.
        If train size is also None, test size is set to 0.25.

    train_size : float, int, or None (default is None)
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState
        Pseudo-random number generator state used for random sampling.

    stratify : array-like or None (default is None)
        If not None, data is split in a stratified fashion, using this as
        the labels array.

        .. versionadded:: 0.17
           *stratify* splitting

    Returns
    -------
    splitting : list, length = 2 * len(arrays),
        List containing train-test split of inputs.

        .. versionadded:: 0.16
            If the input is sparse, the output will be a
            ``scipy.sparse.csr_matrix``. Else, output type is the same as the
            input type.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.cross_validation import train_test_split
    >>> X, y = np.arange(10).reshape((5, 2)), range(5)
    >>> X
    array([[0, 1],
           [2, 3],
           [4, 5],
           [6, 7],
           [8, 9]])
    >>> list(y)
    [0, 1, 2, 3, 4]

    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, test_size=0.33, random_state=42)
    ...
    >>> X_train
    array([[4, 5],
           [0, 1],
           [6, 7]])
    >>> y_train
    [2, 0, 3]
    >>> X_test
    array([[2, 3],
           [8, 9]])
    >>> y_test
    [1, 4]

    """
    n_arrays = len(arrays)
    if n_arrays == 0:
        raise ValueError("At least one array required as input")

    test_size = options.pop('test_size', None)
    train_size = options.pop('train_size', None)
    random_state = options.pop('random_state', None)
    stratify = options.pop('stratify', None)

    if options:
        raise TypeError("Invalid parameters passed: %s" % str(options))

    if test_size is None and train_size is None:
        test_size = 0.25
    arrays = indexable(*arrays)
    if stratify is not None:
        cv = StratifiedShuffleSplit(stratify, test_size=test_size,
                                    train_size=train_size,
                                    random_state=random_state)
    else:
        n_samples = _num_samples(arrays[0])
        cv = ShuffleSplit(n_samples, test_size=test_size,
                          train_size=train_size,
                          random_state=random_state)

    train, test = next(iter(cv))
    return list(chain.from_iterable((safe_indexing(a, train),
                                     safe_indexing(a, test)) for a in arrays))


train_test_split.__test__ = False  # to avoid a pb with nosetests