1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
"""KDDCUP 99 dataset.
A classic dataset for anomaly detection.
The dataset page is available from UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
"""
import sys
import errno
from gzip import GzipFile
from io import BytesIO
import logging
import os
from os.path import exists, join
try:
from urllib2 import urlopen
except ImportError:
from urllib.request import urlopen
import numpy as np
from .base import get_data_home
from .base import Bunch
from ..externals import joblib, six
from ..utils import check_random_state
from ..utils import shuffle as shuffle_method
URL10 = ('http://archive.ics.uci.edu/ml/'
'machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz')
URL = ('http://archive.ics.uci.edu/ml/'
'machine-learning-databases/kddcup99-mld/kddcup.data.gz')
logger = logging.getLogger()
def fetch_kddcup99(subset=None, shuffle=False, random_state=None,
percent10=True, download_if_missing=True):
"""Load and return the kddcup 99 dataset (classification).
The KDD Cup '99 dataset was created by processing the tcpdump portions
of the 1998 DARPA Intrusion Detection System (IDS) Evaluation dataset,
created by MIT Lincoln Lab [1] . The artificial data was generated using
a closed network and hand-injected attacks to produce a large number of
different types of attack with normal activity in the background.
As the initial goal was to produce a large training set for supervised
learning algorithms, there is a large proportion (80.1%) of abnormal
data which is unrealistic in real world, and inappropriate for unsupervised
anomaly detection which aims at detecting 'abnormal' data, ie
1) qualitatively different from normal data.
2) in large minority among the observations.
We thus transform the KDD Data set into two different data sets: SA and SF.
- SA is obtained by simply selecting all the normal data, and a small
proportion of abnormal data to gives an anomaly proportion of 1%.
- SF is obtained as in [2]
by simply picking up the data whose attribute logged_in is positive, thus
focusing on the intrusion attack, which gives a proportion of 0.3% of
attack.
- http and smtp are two subsets of SF corresponding with third feature
equal to 'http' (resp. to 'smtp')
General KDD structure :
================ ==========================================
Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
SA structure :
================ ==========================================
Samples total 976158
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
SF structure :
================ ==========================================
Samples total 699691
Dimensionality 4
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
http structure :
================ ==========================================
Samples total 619052
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
smtp structure :
================ ==========================================
Samples total 95373
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
.. versionadded:: 0.18
Parameters
----------
subset : None, 'SA', 'SF', 'http', 'smtp'
To return the corresponding classical subsets of kddcup 99.
If None, return the entire kddcup 99 dataset.
random_state : int, RandomState instance or None, optional (default=None)
Random state for shuffling the dataset.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
shuffle : bool, default=False
Whether to shuffle dataset.
percent10 : bool, default=False
Whether to load only 10 percent of the data.
download_if_missing : bool, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
Returns
-------
data : Bunch
Dictionary-like object, the interesting attributes are:
'data', the data to learn and 'target', the regression target for each
sample.
References
----------
.. [1] Analysis and Results of the 1999 DARPA Off-Line Intrusion
Detection Evaluation Richard Lippmann, Joshua W. Haines,
David J. Fried, Jonathan Korba, Kumar Das
.. [2] A Geometric Framework for Unsupervised Anomaly Detection: Detecting
Intrusions in Unlabeled Data (2002) by Eleazar Eskin, Andrew Arnold,
Michael Prerau, Leonid Portnoy, Sal Stolfo
"""
kddcup99 = _fetch_brute_kddcup99(shuffle=shuffle, percent10=percent10,
download_if_missing=download_if_missing)
data = kddcup99.data
target = kddcup99.target
if subset == 'SA':
s = target == b'normal.'
t = np.logical_not(s)
normal_samples = data[s, :]
normal_targets = target[s]
abnormal_samples = data[t, :]
abnormal_targets = target[t]
n_samples_abnormal = abnormal_samples.shape[0]
# selected abnormal samples:
random_state = check_random_state(random_state)
r = random_state.randint(0, n_samples_abnormal, 3377)
abnormal_samples = abnormal_samples[r]
abnormal_targets = abnormal_targets[r]
data = np.r_[normal_samples, abnormal_samples]
target = np.r_[normal_targets, abnormal_targets]
if subset == 'SF' or subset == 'http' or subset == 'smtp':
# select all samples with positive logged_in attribute:
s = data[:, 11] == 1
data = np.c_[data[s, :11], data[s, 12:]]
target = target[s]
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float))
data[:, 4] = np.log((data[:, 4] + 0.1).astype(float))
data[:, 5] = np.log((data[:, 5] + 0.1).astype(float))
if subset == 'http':
s = data[:, 2] == b'http'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
if subset == 'smtp':
s = data[:, 2] == b'smtp'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
if subset == 'SF':
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]]
return Bunch(data=data, target=target)
def _fetch_brute_kddcup99(subset=None, data_home=None,
download_if_missing=True, random_state=None,
shuffle=False, percent10=False):
"""Load the kddcup99 dataset, downloading it if necessary.
Parameters
----------
subset : None, 'SA', 'SF', 'http', 'smtp'
To return the corresponding classical subsets of kddcup 99.
If None, return the entire kddcup 99 dataset.
data_home : string, optional
Specify another download and cache folder for the datasets. By default
all scikit learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : boolean, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
random_state : int, RandomState instance or None, optional (default=None)
Random state for shuffling the dataset.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
shuffle : bool, default=False
Whether to shuffle dataset.
percent10 : bool, default=False
Whether to load only 10 percent of the data.
Returns
-------
dataset : dict-like object with the following attributes:
dataset.data : numpy array of shape (494021, 41)
Each row corresponds to the 41 features in the dataset.
dataset.target : numpy array of shape (494021,)
Each value corresponds to one of the 21 attack types or to the
label 'normal.'.
dataset.DESCR : string
Description of the kddcup99 dataset.
"""
data_home = get_data_home(data_home=data_home)
if sys.version_info[0] == 3:
# The zlib compression format use by joblib is not compatible when
# switching from Python 2 to Python 3, let us use a separate folder
# under Python 3:
dir_suffix = "-py3"
else:
# Backward compat for Python 2 users
dir_suffix = ""
if percent10:
kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix)
else:
kddcup_dir = join(data_home, "kddcup99" + dir_suffix)
samples_path = join(kddcup_dir, "samples")
targets_path = join(kddcup_dir, "targets")
available = exists(samples_path)
if download_if_missing and not available:
_mkdirp(kddcup_dir)
URL_ = URL10 if percent10 else URL
logger.warning("Downloading %s" % URL_)
f = BytesIO(urlopen(URL_).read())
dt = [('duration', int),
('protocol_type', 'S4'),
('service', 'S11'),
('flag', 'S6'),
('src_bytes', int),
('dst_bytes', int),
('land', int),
('wrong_fragment', int),
('urgent', int),
('hot', int),
('num_failed_logins', int),
('logged_in', int),
('num_compromised', int),
('root_shell', int),
('su_attempted', int),
('num_root', int),
('num_file_creations', int),
('num_shells', int),
('num_access_files', int),
('num_outbound_cmds', int),
('is_host_login', int),
('is_guest_login', int),
('count', int),
('srv_count', int),
('serror_rate', float),
('srv_serror_rate', float),
('rerror_rate', float),
('srv_rerror_rate', float),
('same_srv_rate', float),
('diff_srv_rate', float),
('srv_diff_host_rate', float),
('dst_host_count', int),
('dst_host_srv_count', int),
('dst_host_same_srv_rate', float),
('dst_host_diff_srv_rate', float),
('dst_host_same_src_port_rate', float),
('dst_host_srv_diff_host_rate', float),
('dst_host_serror_rate', float),
('dst_host_srv_serror_rate', float),
('dst_host_rerror_rate', float),
('dst_host_srv_rerror_rate', float),
('labels', 'S16')]
DT = np.dtype(dt)
file_ = GzipFile(fileobj=f, mode='r')
Xy = []
for line in file_.readlines():
if six.PY3:
line = line.decode()
Xy.append(line.replace('\n', '').split(','))
file_.close()
print('extraction done')
Xy = np.asarray(Xy, dtype=object)
for j in range(42):
Xy[:, j] = Xy[:, j].astype(DT[j])
X = Xy[:, :-1]
y = Xy[:, -1]
# XXX bug when compress!=0:
# (error: 'Incorrect data length while decompressing[...] the file
# could be corrupted.')
joblib.dump(X, samples_path, compress=0)
joblib.dump(y, targets_path, compress=0)
try:
X, y
except NameError:
X = joblib.load(samples_path)
y = joblib.load(targets_path)
if shuffle:
X, y = shuffle_method(X, y, random_state=random_state)
return Bunch(data=X, target=y, DESCR=__doc__)
def _mkdirp(d):
"""Ensure directory d exists (like mkdir -p on Unix)
No guarantee that the directory is writable.
"""
try:
os.makedirs(d)
except OSError as e:
if e.errno != errno.EEXIST:
raise
|