File: test_svmlight_format.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (404 lines) | stat: -rw-r--r-- 13,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from bz2 import BZ2File
import gzip
from io import BytesIO
import numpy as np
import scipy.sparse as sp
import os
import shutil
from tempfile import NamedTemporaryFile

from sklearn.externals.six import b

from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import raises
from sklearn.utils.testing import assert_in

import sklearn
from sklearn.datasets import (load_svmlight_file, load_svmlight_files,
                              dump_svmlight_file)

currdir = os.path.dirname(os.path.abspath(__file__))
datafile = os.path.join(currdir, "data", "svmlight_classification.txt")
multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt")
invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt")
invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt")


def test_load_svmlight_file():
    X, y = load_svmlight_file(datafile)

    # test X's shape
    assert_equal(X.indptr.shape[0], 7)
    assert_equal(X.shape[0], 6)
    assert_equal(X.shape[1], 21)
    assert_equal(y.shape[0], 6)

    # test X's non-zero values
    for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5),
                     (1, 5, 1.0), (1, 12, -3),
                     (2, 20, 27)):

        assert_equal(X[i, j], val)

    # tests X's zero values
    assert_equal(X[0, 3], 0)
    assert_equal(X[0, 5], 0)
    assert_equal(X[1, 8], 0)
    assert_equal(X[1, 16], 0)
    assert_equal(X[2, 18], 0)

    # test can change X's values
    X[0, 2] *= 2
    assert_equal(X[0, 2], 5)

    # test y
    assert_array_equal(y, [1, 2, 3, 4, 1, 2])


def test_load_svmlight_file_fd():
    # test loading from file descriptor
    X1, y1 = load_svmlight_file(datafile)

    fd = os.open(datafile, os.O_RDONLY)
    try:
        X2, y2 = load_svmlight_file(fd)
        assert_array_equal(X1.data, X2.data)
        assert_array_equal(y1, y2)
    finally:
        os.close(fd)


def test_load_svmlight_file_multilabel():
    X, y = load_svmlight_file(multifile, multilabel=True)
    assert_equal(y, [(0, 1), (2,), (), (1, 2)])


def test_load_svmlight_files():
    X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2,
                                                           dtype=np.float32)
    assert_array_equal(X_train.toarray(), X_test.toarray())
    assert_array_equal(y_train, y_test)
    assert_equal(X_train.dtype, np.float32)
    assert_equal(X_test.dtype, np.float32)

    X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3,
                                                 dtype=np.float64)
    assert_equal(X1.dtype, X2.dtype)
    assert_equal(X2.dtype, X3.dtype)
    assert_equal(X3.dtype, np.float64)


def test_load_svmlight_file_n_features():
    X, y = load_svmlight_file(datafile, n_features=22)

    # test X'shape
    assert_equal(X.indptr.shape[0], 7)
    assert_equal(X.shape[0], 6)
    assert_equal(X.shape[1], 22)

    # test X's non-zero values
    for i, j, val in ((0, 2, 2.5), (0, 10, -5.2),
                     (1, 5, 1.0), (1, 12, -3)):

        assert_equal(X[i, j], val)

    # 21 features in file
    assert_raises(ValueError, load_svmlight_file, datafile, n_features=20)


def test_load_compressed():
    X, y = load_svmlight_file(datafile)

    with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
        tmp.close()  # necessary under windows
        with open(datafile, "rb") as f:
            shutil.copyfileobj(f, gzip.open(tmp.name, "wb"))
        Xgz, ygz = load_svmlight_file(tmp.name)
        # because we "close" it manually and write to it,
        # we need to remove it manually.
        os.remove(tmp.name)
    assert_array_equal(X.toarray(), Xgz.toarray())
    assert_array_equal(y, ygz)

    with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
        tmp.close()  # necessary under windows
        with open(datafile, "rb") as f:
            shutil.copyfileobj(f, BZ2File(tmp.name, "wb"))
        Xbz, ybz = load_svmlight_file(tmp.name)
        # because we "close" it manually and write to it,
        # we need to remove it manually.
        os.remove(tmp.name)
    assert_array_equal(X.toarray(), Xbz.toarray())
    assert_array_equal(y, ybz)


@raises(ValueError)
def test_load_invalid_file():
    load_svmlight_file(invalidfile)


@raises(ValueError)
def test_load_invalid_order_file():
    load_svmlight_file(invalidfile2)


@raises(ValueError)
def test_load_zero_based():
    f = BytesIO(b("-1 4:1.\n1 0:1\n"))
    load_svmlight_file(f, zero_based=False)


def test_load_zero_based_auto():
    data1 = b("-1 1:1 2:2 3:3\n")
    data2 = b("-1 0:0 1:1\n")

    f1 = BytesIO(data1)
    X, y = load_svmlight_file(f1, zero_based="auto")
    assert_equal(X.shape, (1, 3))

    f1 = BytesIO(data1)
    f2 = BytesIO(data2)
    X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto")
    assert_equal(X1.shape, (1, 4))
    assert_equal(X2.shape, (1, 4))


def test_load_with_qid():
    # load svmfile with qid attribute
    data = b("""
    3 qid:1 1:0.53 2:0.12
    2 qid:1 1:0.13 2:0.1
    7 qid:2 1:0.87 2:0.12""")
    X, y = load_svmlight_file(BytesIO(data), query_id=False)
    assert_array_equal(y, [3, 2, 7])
    assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]])
    res1 = load_svmlight_files([BytesIO(data)], query_id=True)
    res2 = load_svmlight_file(BytesIO(data), query_id=True)
    for X, y, qid in (res1, res2):
        assert_array_equal(y, [3, 2, 7])
        assert_array_equal(qid, [1, 1, 2])
        assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]])


@raises(ValueError)
def test_load_invalid_file2():
    load_svmlight_files([datafile, invalidfile, datafile])


@raises(TypeError)
def test_not_a_filename():
    # in python 3 integers are valid file opening arguments (taken as unix
    # file descriptors)
    load_svmlight_file(.42)


@raises(IOError)
def test_invalid_filename():
    load_svmlight_file("trou pic nic douille")


def test_dump():
    X_sparse, y_dense = load_svmlight_file(datafile)
    X_dense = X_sparse.toarray()
    y_sparse = sp.csr_matrix(y_dense)

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
    y_sliced = y_sparse[np.arange(y_sparse.shape[0])]

    for X in (X_sparse, X_dense, X_sliced):
        for y in (y_sparse, y_dense, y_sliced):
            for zero_based in (True, False):
                for dtype in [np.float32, np.float64, np.int32]:
                    f = BytesIO()
                    # we need to pass a comment to get the version info in;
                    # LibSVM doesn't grok comments so they're not put in by
                    # default anymore.

                    if (sp.issparse(y) and y.shape[0] == 1):
                        # make sure y's shape is: (n_samples, n_labels)
                        # when it is sparse
                        y = y.T

                    dump_svmlight_file(X.astype(dtype), y, f, comment="test",
                                       zero_based=zero_based)
                    f.seek(0)

                    comment = f.readline()
                    try:
                        comment = str(comment, "utf-8")
                    except TypeError:  # fails in Python 2.x
                        pass

                    assert_in("scikit-learn %s" % sklearn.__version__, comment)

                    comment = f.readline()
                    try:
                        comment = str(comment, "utf-8")
                    except TypeError:  # fails in Python 2.x
                        pass

                    assert_in(["one", "zero"][zero_based] + "-based", comment)

                    X2, y2 = load_svmlight_file(f, dtype=dtype,
                                                zero_based=zero_based)
                    assert_equal(X2.dtype, dtype)
                    assert_array_equal(X2.sorted_indices().indices, X2.indices)

                    X2_dense = X2.toarray()

                    if dtype == np.float32:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(
                            X_dense.astype(dtype), X2_dense, 4)
                        assert_array_almost_equal(
                            y_dense.astype(dtype), y2, 4)
                    else:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(
                            X_dense.astype(dtype), X2_dense, 15)
                        assert_array_almost_equal(
                            y_dense.astype(dtype), y2, 15)


def test_dump_multilabel():
    X = [[1, 0, 3, 0, 5],
         [0, 0, 0, 0, 0],
         [0, 5, 0, 1, 0]]
    y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]]
    y_sparse = sp.csr_matrix(y_dense)
    for y in [y_dense, y_sparse]:
        f = BytesIO()
        dump_svmlight_file(X, y, f, multilabel=True)
        f.seek(0)
        # make sure it dumps multilabel correctly
        assert_equal(f.readline(), b("1 0:1 2:3 4:5\n"))
        assert_equal(f.readline(), b("0,2 \n"))
        assert_equal(f.readline(), b("0,1 1:5 3:1\n"))


def test_dump_concise():
    one = 1
    two = 2.1
    three = 3.01
    exact = 1.000000000000001
    # loses the last decimal place
    almost = 1.0000000000000001
    X = [[one, two, three, exact, almost],
         [1e9, 2e18, 3e27, 0, 0],
         [0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0]]
    y = [one, two, three, exact, almost]
    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)
    # make sure it's using the most concise format possible
    assert_equal(f.readline(),
                 b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n"))
    assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n"))
    assert_equal(f.readline(), b("3.01 \n"))
    assert_equal(f.readline(), b("1.000000000000001 \n"))
    assert_equal(f.readline(), b("1 \n"))
    f.seek(0)
    # make sure it's correct too :)
    X2, y2 = load_svmlight_file(f)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_equal(y, y2)


def test_dump_comment():
    X, y = load_svmlight_file(datafile)
    X = X.toarray()

    f = BytesIO()
    ascii_comment = "This is a comment\nspanning multiple lines."
    dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_equal(y, y2)

    # XXX we have to update this to support Python 3.x
    utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc")
    f = BytesIO()
    assert_raises(UnicodeDecodeError,
                  dump_svmlight_file, X, y, f, comment=utf8_comment)

    unicode_comment = utf8_comment.decode("utf-8")
    f = BytesIO()
    dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_equal(y, y2)

    f = BytesIO()
    assert_raises(ValueError,
                  dump_svmlight_file, X, y, f, comment="I've got a \0.")


def test_dump_invalid():
    X, y = load_svmlight_file(datafile)

    f = BytesIO()
    y2d = [y]
    assert_raises(ValueError, dump_svmlight_file, X, y2d, f)

    f = BytesIO()
    assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f)


def test_dump_query_id():
    # test dumping a file with query_id
    X, y = load_svmlight_file(datafile)
    X = X.toarray()
    query_id = np.arange(X.shape[0]) // 2
    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True)

    f.seek(0)
    X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_almost_equal(X, X1.toarray())
    assert_array_almost_equal(y, y1)
    assert_array_almost_equal(query_id, query_id1)


def test_load_with_long_qid():
    # load svmfile with longint qid attribute
    data = b("""
    1 qid:0 0:1 1:2 2:3
    0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
    0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
    3 qid:9223372036854775807  0:1440446648 1:72048431380967004 2:236784985""")
    X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)

    true_X = [[1,          2,                 3],
             [1440446648, 72048431380967004, 236784985],
             [1440446648, 72048431380967004, 236784985],
             [1440446648, 72048431380967004, 236784985]]

    true_y = [1, 0, 0, 3]
    trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
    f.seek(0)
    X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f.seek(0)
    X, y = load_svmlight_file(f, query_id=False, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)