File: incremental_pca.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (264 lines) | stat: -rw-r--r-- 10,440 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Incremental Principal Components Analysis."""

# Author: Kyle Kastner <kastnerkyle@gmail.com>
#         Giorgio Patrini
# License: BSD 3 clause

import numpy as np
from scipy import linalg

from .base import _BasePCA
from ..utils import check_array, gen_batches
from ..utils.extmath import svd_flip, _incremental_mean_and_var


class IncrementalPCA(_BasePCA):
    """Incremental principal components analysis (IPCA).

    Linear dimensionality reduction using Singular Value Decomposition of
    centered data, keeping only the most significant singular vectors to
    project the data to a lower dimensional space.

    Depending on the size of the input data, this algorithm can be much more
    memory efficient than a PCA.

    This algorithm has constant memory complexity, on the order
    of ``batch_size``, enabling use of np.memmap files without loading the
    entire file into memory.

    The computational overhead of each SVD is
    ``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples
    remain in memory at a time. There will be ``n_samples / batch_size`` SVD
    computations to get the principal components, versus 1 large SVD of
    complexity ``O(n_samples * n_features ** 2)`` for PCA.

    Read more in the :ref:`User Guide <IncrementalPCA>`.

    Parameters
    ----------
    n_components : int or None, (default=None)
        Number of components to keep. If ``n_components `` is ``None``,
        then ``n_components`` is set to ``min(n_samples, n_features)``.

    batch_size : int or None, (default=None)
        The number of samples to use for each batch. Only used when calling
        ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
        is inferred from the data and set to ``5 * n_features``, to provide a
        balance between approximation accuracy and memory consumption.

    copy : bool, (default=True)
        If False, X will be overwritten. ``copy=False`` can be used to
        save memory but is unsafe for general use.

    whiten : bool, optional
        When True (False by default) the ``components_`` vectors are divided
        by ``n_samples`` times ``components_`` to ensure uncorrelated outputs
        with unit component-wise variances.

        Whitening will remove some information from the transformed signal
        (the relative variance scales of the components) but can sometimes
        improve the predictive accuracy of the downstream estimators by
        making data respect some hard-wired assumptions.

    Attributes
    ----------
    components_ : array, shape (n_components, n_features)
        Components with maximum variance.

    explained_variance_ : array, shape (n_components,)
        Variance explained by each of the selected components.

    explained_variance_ratio_ : array, shape (n_components,)
        Percentage of variance explained by each of the selected components.
        If all components are stored, the sum of explained variances is equal
        to 1.0

    mean_ : array, shape (n_features,)
        Per-feature empirical mean, aggregate over calls to ``partial_fit``.

    var_ : array, shape (n_features,)
        Per-feature empirical variance, aggregate over calls to
        ``partial_fit``.

    noise_variance_ : float
        The estimated noise covariance following the Probabilistic PCA model
        from Tipping and Bishop 1999. See "Pattern Recognition and
        Machine Learning" by C. Bishop, 12.2.1 p. 574 or
        http://www.miketipping.com/papers/met-mppca.pdf.

    n_components_ : int
        The estimated number of components. Relevant when
        ``n_components=None``.

    n_samples_seen_ : int
        The number of samples processed by the estimator. Will be reset on
        new calls to fit, but increments across ``partial_fit`` calls.

    Notes
    -----
    Implements the incremental PCA model from:
    `D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual
    Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3,
    pp. 125-141, May 2008.`
    See http://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf

    This model is an extension of the Sequential Karhunen-Loeve Transform from:
    `A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and
    its Application to Images, IEEE Transactions on Image Processing, Volume 9,
    Number 8, pp. 1371-1374, August 2000.`
    See http://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf

    We have specifically abstained from an optimization used by authors of both
    papers, a QR decomposition used in specific situations to reduce the
    algorithmic complexity of the SVD. The source for this technique is
    `Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5,
    section 5.4.4, pp 252-253.`. This technique has been omitted because it is
    advantageous only when decomposing a matrix with ``n_samples`` (rows)
    >= 5/3 * ``n_features`` (columns), and hurts the readability of the
    implemented algorithm. This would be a good opportunity for future
    optimization, if it is deemed necessary.

    References
    ----------
    D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual
        Tracking, International Journal of Computer Vision, Volume 77,
        Issue 1-3, pp. 125-141, May 2008.

    G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,
        Section 5.4.4, pp. 252-253.

    See also
    --------
    PCA
    RandomizedPCA
    KernelPCA
    SparsePCA
    TruncatedSVD
    """

    def __init__(self, n_components=None, whiten=False, copy=True,
                 batch_size=None):
        self.n_components = n_components
        self.whiten = whiten
        self.copy = copy
        self.batch_size = batch_size

    def fit(self, X, y=None):
        """Fit the model with X, using minibatches of size batch_size.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples and
            n_features is the number of features.

        y: Passthrough for ``Pipeline`` compatibility.

        Returns
        -------
        self: object
            Returns the instance itself.
        """
        self.components_ = None
        self.n_samples_seen_ = 0
        self.mean_ = .0
        self.var_ = .0
        self.singular_values_ = None
        self.explained_variance_ = None
        self.explained_variance_ratio_ = None
        self.noise_variance_ = None

        X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32])
        n_samples, n_features = X.shape

        if self.batch_size is None:
            self.batch_size_ = 5 * n_features
        else:
            self.batch_size_ = self.batch_size

        for batch in gen_batches(n_samples, self.batch_size_):
            self.partial_fit(X[batch], check_input=False)

        return self

    def partial_fit(self, X, y=None, check_input=True):
        """Incremental fit with X. All of X is processed as a single batch.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples and
            n_features is the number of features.

        Returns
        -------
        self: object
            Returns the instance itself.
        """
        if check_input:
            X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32])
        n_samples, n_features = X.shape
        if not hasattr(self, 'components_'):
            self.components_ = None

        if self.n_components is None:
            self.n_components_ = n_features
        elif not 1 <= self.n_components <= n_features:
            raise ValueError("n_components=%r invalid for n_features=%d, need "
                             "more rows than columns for IncrementalPCA "
                             "processing" % (self.n_components, n_features))
        else:
            self.n_components_ = self.n_components

        if (self.components_ is not None) and (self.components_.shape[0] !=
                                               self.n_components_):
            raise ValueError("Number of input features has changed from %i "
                             "to %i between calls to partial_fit! Try "
                             "setting n_components to a fixed value." %
                             (self.components_.shape[0], self.n_components_))

        # This is the first partial_fit
        if not hasattr(self, 'n_samples_seen_'):
            self.n_samples_seen_ = 0
            self.mean_ = .0
            self.var_ = .0

        # Update stats - they are 0 if this is the fisrt step
        col_mean, col_var, n_total_samples = \
            _incremental_mean_and_var(X, last_mean=self.mean_,
                                      last_variance=self.var_,
                                      last_sample_count=self.n_samples_seen_)

        # Whitening
        if self.n_samples_seen_ == 0:
            # If it is the first step, simply whiten X
            X -= col_mean
        else:
            col_batch_mean = np.mean(X, axis=0)
            X -= col_batch_mean
            # Build matrix of combined previous basis and new data
            mean_correction = \
                np.sqrt((self.n_samples_seen_ * n_samples) /
                        n_total_samples) * (self.mean_ - col_batch_mean)
            X = np.vstack((self.singular_values_.reshape((-1, 1)) *
                          self.components_, X, mean_correction))

        U, S, V = linalg.svd(X, full_matrices=False)
        U, V = svd_flip(U, V, u_based_decision=False)
        explained_variance = S ** 2 / n_total_samples
        explained_variance_ratio = S ** 2 / np.sum(col_var * n_total_samples)

        self.n_samples_seen_ = n_total_samples
        self.components_ = V[:self.n_components_]
        self.singular_values_ = S[:self.n_components_]
        self.mean_ = col_mean
        self.var_ = col_var
        self.explained_variance_ = explained_variance[:self.n_components_]
        self.explained_variance_ratio_ = \
            explained_variance_ratio[:self.n_components_]
        if self.n_components_ < n_features:
            self.noise_variance_ = \
                explained_variance[self.n_components_:].mean()
        else:
            self.noise_variance_ = 0.
        return self