1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
""" Principal Component Analysis
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Denis A. Engemann <d.engemann@fz-juelich.de>
# Michael Eickenberg <michael.eickenberg@inria.fr>
# Giorgio Patrini <giorgio.patrini@anu.edu.au>
#
# License: BSD 3 clause
from math import log, sqrt
import numpy as np
from scipy import linalg
from scipy.special import gammaln
from ..externals import six
from .base import _BasePCA
from ..base import BaseEstimator, TransformerMixin
from ..utils import deprecated
from ..utils import check_random_state, as_float_array
from ..utils import check_array
from ..utils.extmath import fast_dot, fast_logdet, randomized_svd, svd_flip
from ..utils.validation import check_is_fitted
from ..utils.arpack import svds
def _assess_dimension_(spectrum, rank, n_samples, n_features):
"""Compute the likelihood of a rank ``rank`` dataset
The dataset is assumed to be embedded in gaussian noise of shape(n,
dimf) having spectrum ``spectrum``.
Parameters
----------
spectrum: array of shape (n)
Data spectrum.
rank: int
Tested rank value.
n_samples: int
Number of samples.
n_features: int
Number of features.
Returns
-------
ll: float,
The log-likelihood
Notes
-----
This implements the method of `Thomas P. Minka:
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
"""
if rank > len(spectrum):
raise ValueError("The tested rank cannot exceed the rank of the"
" dataset")
pu = -rank * log(2.)
for i in range(rank):
pu += (gammaln((n_features - i) / 2.) -
log(np.pi) * (n_features - i) / 2.)
pl = np.sum(np.log(spectrum[:rank]))
pl = -pl * n_samples / 2.
if rank == n_features:
pv = 0
v = 1
else:
v = np.sum(spectrum[rank:]) / (n_features - rank)
pv = -np.log(v) * n_samples * (n_features - rank) / 2.
m = n_features * rank - rank * (rank + 1.) / 2.
pp = log(2. * np.pi) * (m + rank + 1.) / 2.
pa = 0.
spectrum_ = spectrum.copy()
spectrum_[rank:n_features] = v
for i in range(rank):
for j in range(i + 1, len(spectrum)):
pa += log((spectrum[i] - spectrum[j]) *
(1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)
ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2.
return ll
def _infer_dimension_(spectrum, n_samples, n_features):
"""Infers the dimension of a dataset of shape (n_samples, n_features)
The dataset is described by its spectrum `spectrum`.
"""
n_spectrum = len(spectrum)
ll = np.empty(n_spectrum)
for rank in range(n_spectrum):
ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
return ll.argmax()
class PCA(_BasePCA):
"""Principal component analysis (PCA)
Linear dimensionality reduction using Singular Value Decomposition of the
data to project it to a lower dimensional space.
It uses the LAPACK implementation of the full SVD or a randomized truncated
SVD by the method of Halko et al. 2009, depending on the shape of the input
data and the number of components to extract.
It can also use the scipy.sparse.linalg ARPACK implementation of the
truncated SVD.
Read more in the :ref:`User Guide <PCA>`.
Parameters
----------
n_components : int, float, None or string
Number of components to keep.
if n_components is not set all components are kept::
n_components == min(n_samples, n_features)
if n_components == 'mle' and svd_solver == 'full', Minka\'s MLE is used
to guess the dimension
if ``0 < n_components < 1`` and svd_solver == 'full', select the number
of components such that the amount of variance that needs to be
explained is greater than the percentage specified by n_components
n_components cannot be equal to n_features for svd_solver == 'arpack'.
copy : bool (default True)
If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.
whiten : bool, optional (default False)
When True (False by default) the `components_` vectors are multiplied
by the square root of n_samples and then divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making their data respect some hard-wired assumptions.
svd_solver : string {'auto', 'full', 'arpack', 'randomized'}
auto :
the solver is selected by a default policy based on `X.shape` and
`n_components`: if the input data is larger than 500x500 and the
number of components to extract is lower than 80% of the smallest
dimension of the data, then then more efficient 'randomized'
method is enabled. Otherwise the exact full SVD is computed and
optionally truncated afterwards.
full :
run exact full SVD calling the standard LAPACK solver via
`scipy.linalg.svd` and select the components by postprocessing
arpack :
run SVD truncated to n_components calling ARPACK solver via
`scipy.sparse.linalg.svds`. It requires strictly
0 < n_components < X.shape[1]
randomized :
run randomized SVD by the method of Halko et al.
.. versionadded:: 0.18.0
tol : float >= 0, optional (default .0)
Tolerance for singular values computed by svd_solver == 'arpack'.
.. versionadded:: 0.18.0
iterated_power : int >= 0, or 'auto', (default 'auto')
Number of iterations for the power method computed by
svd_solver == 'randomized'.
.. versionadded:: 0.18.0
random_state : int or RandomState instance or None (default None)
Pseudo Random Number generator seed control. If None, use the
numpy.random singleton. Used by svd_solver == 'arpack' or 'randomized'.
.. versionadded:: 0.18.0
Attributes
----------
components_ : array, [n_components, n_features]
Principal axes in feature space, representing the directions of
maximum variance in the data. The components are sorted by
``explained_variance_``.
explained_variance_ : array, [n_components]
The amount of variance explained by each of the selected components.
.. versionadded:: 0.18
explained_variance_ratio_ : array, [n_components]
Percentage of variance explained by each of the selected components.
If ``n_components`` is not set then all components are stored and the
sum of explained variances is equal to 1.0.
mean_ : array, [n_features]
Per-feature empirical mean, estimated from the training set.
Equal to `X.mean(axis=1)`.
n_components_ : int
The estimated number of components. When n_components is set
to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
number is estimated from input data. Otherwise it equals the parameter
n_components, or n_features if n_components is None.
noise_variance_ : float
The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See "Pattern Recognition and
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
computed the estimated data covariance and score samples.
References
----------
For n_components == 'mle', this class uses the method of `Thomas P. Minka:
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
Implements the probabilistic PCA model from:
M. Tipping and C. Bishop, Probabilistic Principal Component Analysis,
Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622
via the score and score_samples methods.
See http://www.miketipping.com/papers/met-mppca.pdf
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
For svd_solver == 'randomized', see:
`Finding structure with randomness: Stochastic algorithms
for constructing approximate matrix decompositions Halko, et al., 2009
(arXiv:909)`
`A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert`
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.99244... 0.00755...]
>>> pca = PCA(n_components=2, svd_solver='full')
>>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
svd_solver='full', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.99244... 0.00755...]
>>> pca = PCA(n_components=1, svd_solver='arpack')
>>> pca.fit(X)
PCA(copy=True, iterated_power='auto', n_components=1, random_state=None,
svd_solver='arpack', tol=0.0, whiten=False)
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.99244...]
See also
--------
KernelPCA
SparsePCA
TruncatedSVD
IncrementalPCA
"""
def __init__(self, n_components=None, copy=True, whiten=False,
svd_solver='auto', tol=0.0, iterated_power='auto',
random_state=None):
self.n_components = n_components
self.copy = copy
self.whiten = whiten
self.svd_solver = svd_solver
self.tol = tol
self.iterated_power = iterated_power
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model with X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
self._fit(X)
return self
def fit_transform(self, X, y=None):
"""Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
U, S, V = self._fit(X)
U = U[:, :self.n_components_]
if self.whiten:
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
U *= sqrt(X.shape[0])
else:
# X_new = X * V = U * S * V^T * V = U * S
U *= S[:self.n_components_]
return U
def _fit(self, X):
"""Dispatch to the right submethod depending on the chosen solver."""
X = check_array(X, dtype=[np.float64], ensure_2d=True,
copy=self.copy)
# Handle n_components==None
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
# Handle svd_solver
svd_solver = self.svd_solver
if svd_solver == 'auto':
# Small problem, just call full PCA
if max(X.shape) <= 500:
svd_solver = 'full'
elif n_components >= 1 and n_components < .8 * min(X.shape):
svd_solver = 'randomized'
# This is also the case of n_components in (0,1)
else:
svd_solver = 'full'
# Call different fits for either full or truncated SVD
if svd_solver == 'full':
return self._fit_full(X, n_components)
elif svd_solver in ['arpack', 'randomized']:
return self._fit_truncated(X, n_components, svd_solver)
def _fit_full(self, X, n_components):
"""Fit the model by computing full SVD on X"""
n_samples, n_features = X.shape
if n_components == 'mle':
if n_samples < n_features:
raise ValueError("n_components='mle' is only supported "
"if n_samples >= n_features")
elif not 0 <= n_components <= n_features:
raise ValueError("n_components=%r must be between 0 and "
"n_features=%r with svd_solver='full'"
% (n_components, n_features))
# Center data
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
U, S, V = linalg.svd(X, full_matrices=False)
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U, V)
components_ = V
# Get variance explained by singular values
explained_variance_ = (S ** 2) / n_samples
total_var = explained_variance_.sum()
explained_variance_ratio_ = explained_variance_ / total_var
# Postprocess the number of components required
if n_components == 'mle':
n_components = \
_infer_dimension_(explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = explained_variance_ratio_.cumsum()
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = components_[:n_components]
self.n_components_ = n_components
self.explained_variance_ = explained_variance_[:n_components]
self.explained_variance_ratio_ = \
explained_variance_ratio_[:n_components]
return U, S, V
def _fit_truncated(self, X, n_components, svd_solver):
"""Fit the model by computing truncated SVD (by ARPACK or randomized)
on X
"""
n_samples, n_features = X.shape
if isinstance(n_components, six.string_types):
raise ValueError("n_components=%r cannot be a string "
"with svd_solver='%s'"
% (n_components, svd_solver))
elif not 1 <= n_components <= n_features:
raise ValueError("n_components=%r must be between 1 and "
"n_features=%r with svd_solver='%s'"
% (n_components, n_features, svd_solver))
elif svd_solver == 'arpack' and n_components == n_features:
raise ValueError("n_components=%r must be stricly less than "
"n_features=%r with svd_solver='%s'"
% (n_components, n_features, svd_solver))
random_state = check_random_state(self.random_state)
# Center data
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
if svd_solver == 'arpack':
# random init solution, as ARPACK does it internally
v0 = random_state.uniform(-1, 1, size=min(X.shape))
U, S, V = svds(X, k=n_components, tol=self.tol, v0=v0)
# svds doesn't abide by scipy.linalg.svd/randomized_svd
# conventions, so reverse its outputs.
S = S[::-1]
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U[:, ::-1], V[::-1])
elif svd_solver == 'randomized':
# sign flipping is done inside
U, S, V = randomized_svd(X, n_components=n_components,
n_iter=self.iterated_power,
flip_sign=True,
random_state=random_state)
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = V
self.n_components_ = n_components
# Get variance explained by singular values
self.explained_variance_ = (S ** 2) / n_samples
total_var = np.var(X, axis=0)
self.explained_variance_ratio_ = \
self.explained_variance_ / total_var.sum()
if self.n_components_ < n_features:
self.noise_variance_ = (total_var.sum() -
self.explained_variance_.sum())
else:
self.noise_variance_ = 0.
return U, S, V
def score_samples(self, X):
"""Return the log-likelihood of each sample.
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X: array, shape(n_samples, n_features)
The data.
Returns
-------
ll: array, shape (n_samples,)
Log-likelihood of each sample under the current model
"""
check_is_fitted(self, 'mean_')
X = check_array(X)
Xr = X - self.mean_
n_features = X.shape[1]
log_like = np.zeros(X.shape[0])
precision = self.get_precision()
log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
log_like -= .5 * (n_features * log(2. * np.pi) -
fast_logdet(precision))
return log_like
def score(self, X, y=None):
"""Return the average log-likelihood of all samples.
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X: array, shape(n_samples, n_features)
The data.
Returns
-------
ll: float
Average log-likelihood of the samples under the current model
"""
return np.mean(self.score_samples(X))
@deprecated("RandomizedPCA was deprecated in 0.18 and will be removed in 0.20. "
"Use PCA(svd_solver='randomized') instead. The new implementation "
"DOES NOT store whiten ``components_``. Apply transform to get them.")
class RandomizedPCA(BaseEstimator, TransformerMixin):
"""Principal component analysis (PCA) using randomized SVD
Linear dimensionality reduction using approximated Singular Value
Decomposition of the data and keeping only the most significant
singular vectors to project the data to a lower dimensional space.
Read more in the :ref:`User Guide <RandomizedPCA>`.
Parameters
----------
n_components : int, optional
Maximum number of components to keep. When not given or None, this
is set to n_features (the second dimension of the training data).
copy : bool
If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.
iterated_power : int, default=2
Number of iterations for the power method.
.. versionchanged:: 0.18
whiten : bool, optional
When True (False by default) the `components_` vectors are multiplied by
the square root of (n_samples) and divided by the singular values to
ensure uncorrelated outputs with unit component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making their data respect some hard-wired assumptions.
random_state : int or RandomState instance or None (default)
Pseudo Random Number generator seed control. If None, use the
numpy.random singleton.
Attributes
----------
components_ : array, [n_components, n_features]
Components with maximum variance.
explained_variance_ratio_ : array, [n_components]
Percentage of variance explained by each of the selected components.
k is not set then all components are stored and the sum of explained
variances is equal to 1.0
mean_ : array, [n_features]
Per-feature empirical mean, estimated from the training set.
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
RandomizedPCA(copy=True, iterated_power=2, n_components=2,
random_state=None, whiten=False)
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
[ 0.99244... 0.00755...]
See also
--------
PCA
TruncatedSVD
References
----------
.. [Halko2009] `Finding structure with randomness: Stochastic algorithms
for constructing approximate matrix decompositions Halko, et al., 2009
(arXiv:909)`
.. [MRT] `A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert`
"""
def __init__(self, n_components=None, copy=True, iterated_power=2,
whiten=False, random_state=None):
self.n_components = n_components
self.copy = copy
self.iterated_power = iterated_power
self.whiten = whiten
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model with X by extracting the first principal components.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
self._fit(check_array(X))
return self
def _fit(self, X):
"""Fit the model to the data X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
Returns
-------
X : ndarray, shape (n_samples, n_features)
The input data, copied, centered and whitened when requested.
"""
random_state = check_random_state(self.random_state)
X = np.atleast_2d(as_float_array(X, copy=self.copy))
n_samples = X.shape[0]
# Center data
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
U, S, V = randomized_svd(X, n_components,
n_iter=self.iterated_power,
random_state=random_state)
self.explained_variance_ = exp_var = (S ** 2) / n_samples
full_var = np.var(X, axis=0).sum()
self.explained_variance_ratio_ = exp_var / full_var
if self.whiten:
self.components_ = V / S[:, np.newaxis] * sqrt(n_samples)
else:
self.components_ = V
return X
def transform(self, X, y=None):
"""Apply dimensionality reduction on X.
X is projected on the first principal components previous extracted
from a training set.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
check_is_fitted(self, 'mean_')
X = check_array(X)
if self.mean_ is not None:
X = X - self.mean_
X = fast_dot(X, self.components_.T)
return X
def fit_transform(self, X, y=None):
"""Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
X = check_array(X)
X = self._fit(X)
return fast_dot(X, self.components_.T)
def inverse_transform(self, X, y=None):
"""Transform data back to its original space.
Returns an array X_original whose transform would be X.
Parameters
----------
X : array-like, shape (n_samples, n_components)
New data, where n_samples in the number of samples
and n_components is the number of components.
Returns
-------
X_original array-like, shape (n_samples, n_features)
Notes
-----
If whitening is enabled, inverse_transform does not compute the
exact inverse operation of transform.
"""
check_is_fitted(self, 'mean_')
X_original = fast_dot(X, self.components_)
if self.mean_ is not None:
X_original = X_original + self.mean_
return X_original
|