File: test_voting_classifier.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (260 lines) | stat: -rw-r--r-- 10,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Testing for the VotingClassifier"""

import numpy as np
from sklearn.utils.testing import assert_almost_equal, assert_array_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_raise_message
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_multilabel_classification
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.neighbors import KNeighborsClassifier


# Load the iris dataset and randomly permute it
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target


def test_estimator_init():
    eclf = VotingClassifier(estimators=[])
    msg = ('Invalid `estimators` attribute, `estimators` should be'
           ' a list of (string, estimator) tuples')
    assert_raise_message(AttributeError, msg, eclf.fit, X, y)

    clf = LogisticRegression(random_state=1)

    eclf = VotingClassifier(estimators=[('lr', clf)], voting='error')
    msg = ('Voting must be \'soft\' or \'hard\'; got (voting=\'error\')')
    assert_raise_message(ValueError, msg, eclf.fit, X, y)

    eclf = VotingClassifier(estimators=[('lr', clf)], weights=[1, 2])
    msg = ('Number of classifiers and weights must be equal'
           '; got 2 weights, 1 estimators')
    assert_raise_message(ValueError, msg, eclf.fit, X, y)


def test_predictproba_hardvoting():
    eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
                                        ('lr2', LogisticRegression())],
                            voting='hard')
    msg = "predict_proba is not available when voting='hard'"
    assert_raise_message(AttributeError, msg, eclf.predict_proba, X)


def test_notfitted():
    eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
                                        ('lr2', LogisticRegression())],
                            voting='soft')
    msg = ("This VotingClassifier instance is not fitted yet. Call \'fit\'"
           " with appropriate arguments before using this method.")
    assert_raise_message(NotFittedError, msg, eclf.predict_proba, X)


def test_majority_label_iris():
    """Check classification by majority label on dataset iris."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[
                ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                voting='hard')
    scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy')
    assert_almost_equal(scores.mean(), 0.95, decimal=2)


def test_tie_situation():
    """Check voting classifier selects smaller class label in tie situation."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],
                            voting='hard')
    assert_equal(clf1.fit(X, y).predict(X)[73], 2)
    assert_equal(clf2.fit(X, y).predict(X)[73], 1)
    assert_equal(eclf.fit(X, y).predict(X)[73], 1)


def test_weights_iris():
    """Check classification by average probabilities on dataset iris."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[
                            ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 2, 10])
    scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy')
    assert_almost_equal(scores.mean(), 0.93, decimal=2)


def test_predict_on_toy_problem():
    """Manually check predicted class labels for toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()

    X = np.array([[-1.1, -1.5],
                  [-1.2, -1.4],
                  [-3.4, -2.2],
                  [1.1, 1.2],
                  [2.1, 1.4],
                  [3.1, 2.3]])

    y = np.array([1, 1, 1, 2, 2, 2])

    assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2]))
    assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2]))
    assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2]))

    eclf = VotingClassifier(estimators=[
                            ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                            voting='hard',
                            weights=[1, 1, 1])
    assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2]))

    eclf = VotingClassifier(estimators=[
                            ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 1, 1])
    assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2]))


def test_predict_proba_on_toy_problem():
    """Calculate predicted probabilities on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    clf1_res = np.array([[0.59790391, 0.40209609],
                         [0.57622162, 0.42377838],
                         [0.50728456, 0.49271544],
                         [0.40241774, 0.59758226]])

    clf2_res = np.array([[0.8, 0.2],
                         [0.8, 0.2],
                         [0.2, 0.8],
                         [0.3, 0.7]])

    clf3_res = np.array([[0.9985082, 0.0014918],
                         [0.99845843, 0.00154157],
                         [0., 1.],
                         [0., 1.]])

    t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4
    t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4
    t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4
    t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4

    eclf = VotingClassifier(estimators=[
                            ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                            voting='soft',
                            weights=[2, 1, 1])
    eclf_res = eclf.fit(X, y).predict_proba(X)

    assert_almost_equal(t00, eclf_res[0][0], decimal=1)
    assert_almost_equal(t11, eclf_res[1][1], decimal=1)
    assert_almost_equal(t21, eclf_res[2][1], decimal=1)
    assert_almost_equal(t31, eclf_res[3][1], decimal=1)

    try:
        eclf = VotingClassifier(estimators=[
                                ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                                voting='hard')
        eclf.fit(X, y).predict_proba(X)

    except AttributeError:
        pass
    else:
        raise AssertionError('AttributeError for voting == "hard"'
                             ' and with predict_proba not raised')


def test_multilabel():
    """Check if error is raised for multilabel classification."""
    X, y = make_multilabel_classification(n_classes=2, n_labels=1,
                                          allow_unlabeled=False,
                                          random_state=123)
    clf = OneVsRestClassifier(SVC(kernel='linear'))

    eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard')

    try:
        eclf.fit(X, y)
    except NotImplementedError:
        return


def test_gridsearch():
    """Check GridSearch support."""
    clf1 = LogisticRegression(random_state=1)
    clf2 = RandomForestClassifier(random_state=1)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[
                ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                voting='soft')

    params = {'lr__C': [1.0, 100.0],
              'voting': ['soft', 'hard'],
              'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]}

    grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
    grid.fit(iris.data, iris.target)


def test_parallel_predict():
    """Check parallel backend of VotingClassifier on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    eclf1 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
        voting='soft',
        n_jobs=1).fit(X, y)
    eclf2 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
        voting='soft',
        n_jobs=2).fit(X, y)

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))


def test_sample_weight():
    """Tests sample_weight parameter of VotingClassifier"""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = SVC(probability=True, random_state=123)
    eclf1 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y, sample_weight=np.ones((len(y),)))
    eclf2 = VotingClassifier(estimators=[
        ('lr', clf1), ('rf', clf2), ('svc', clf3)],
        voting='soft').fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))

    sample_weight = np.random.RandomState(123).uniform(size=(len(y),))
    eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft')
    eclf3.fit(X, y, sample_weight)
    clf1.fit(X, y, sample_weight)
    assert_array_equal(eclf3.predict(X), clf1.predict(X))
    assert_array_equal(eclf3.predict_proba(X), clf1.predict_proba(X))

    clf4 = KNeighborsClassifier()
    eclf3 = VotingClassifier(estimators=[
        ('lr', clf1), ('svc', clf3), ('knn', clf4)],
        voting='soft')
    msg = ('Underlying estimator \'knn\' does not support sample weights.')
    assert_raise_message(ValueError, msg, eclf3.fit, X, y, sample_weight)