File: from_model.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (258 lines) | stat: -rw-r--r-- 9,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Authors: Gilles Louppe, Mathieu Blondel, Maheshakya Wijewardena
# License: BSD 3 clause

import numpy as np

from .base import SelectorMixin
from ..base import TransformerMixin, BaseEstimator, clone
from ..externals import six

from ..utils import safe_mask, check_array, deprecated
from ..utils.validation import check_is_fitted
from ..exceptions import NotFittedError


def _get_feature_importances(estimator):
    """Retrieve or aggregate feature importances from estimator"""
    if hasattr(estimator, "feature_importances_"):
        importances = estimator.feature_importances_

    elif hasattr(estimator, "coef_"):
        if estimator.coef_.ndim == 1:
            importances = np.abs(estimator.coef_)

        else:
            importances = np.sum(np.abs(estimator.coef_), axis=0)

    else:
        raise ValueError(
            "The underlying estimator %s has no `coef_` or "
            "`feature_importances_` attribute. Either pass a fitted estimator"
            " to SelectFromModel or call fit before calling transform."
            % estimator.__class__.__name__)

    return importances


def _calculate_threshold(estimator, importances, threshold):
    """Interpret the threshold value"""

    if threshold is None:
        # determine default from estimator
        est_name = estimator.__class__.__name__
        if ((hasattr(estimator, "penalty") and estimator.penalty == "l1") or
                "Lasso" in est_name):
            # the natural default threshold is 0 when l1 penalty was used
            threshold = 1e-5
        else:
            threshold = "mean"

    if isinstance(threshold, six.string_types):
        if "*" in threshold:
            scale, reference = threshold.split("*")
            scale = float(scale.strip())
            reference = reference.strip()

            if reference == "median":
                reference = np.median(importances)
            elif reference == "mean":
                reference = np.mean(importances)
            else:
                raise ValueError("Unknown reference: " + reference)

            threshold = scale * reference

        elif threshold == "median":
            threshold = np.median(importances)

        elif threshold == "mean":
            threshold = np.mean(importances)

        else:
            raise ValueError("Expected threshold='mean' or threshold='median' "
                             "got %s" % threshold)

    else:
        threshold = float(threshold)

    return threshold


class _LearntSelectorMixin(TransformerMixin):
    # Note because of the extra threshold parameter in transform, this does
    # not naturally extend from SelectorMixin
    """Transformer mixin selecting features based on importance weights.

    This implementation can be mixin on any estimator that exposes a
    ``feature_importances_`` or ``coef_`` attribute to evaluate the relative
    importance of individual features for feature selection.
    """
    @deprecated('Support to use estimators as feature selectors will be '
                'removed in version 0.19. Use SelectFromModel instead.')
    def transform(self, X, threshold=None):
        """Reduce X to its most important features.

        Uses ``coef_`` or ``feature_importances_`` to determine the most
        important features.  For models with a ``coef_`` for each class, the
        absolute sum over the classes is used.

        Parameters
        ----------
        X : array or scipy sparse matrix of shape [n_samples, n_features]
            The input samples.

        threshold : string, float or None, optional (default=None)
            The threshold value to use for feature selection. Features whose
            importance is greater or equal are kept while the others are
            discarded. If "median" (resp. "mean"), then the threshold value is
            the median (resp. the mean) of the feature importances. A scaling
            factor (e.g., "1.25*mean") may also be used. If None and if
            available, the object attribute ``threshold`` is used. Otherwise,
            "mean" is used by default.

        Returns
        -------
        X_r : array of shape [n_samples, n_selected_features]
            The input samples with only the selected features.
        """
        check_is_fitted(self, ('coef_', 'feature_importances_'),
                        all_or_any=any)

        X = check_array(X, 'csc')
        importances = _get_feature_importances(self)
        if len(importances) != X.shape[1]:
            raise ValueError("X has different number of features than"
                             " during model fitting.")

        if threshold is None:
            threshold = getattr(self, 'threshold', None)
        threshold = _calculate_threshold(self, importances, threshold)

        # Selection
        try:
            mask = importances >= threshold
        except TypeError:
            # Fails in Python 3.x when threshold is str;
            # result is array of True
            raise ValueError("Invalid threshold: all features are discarded.")

        if np.any(mask):
            mask = safe_mask(X, mask)
            return X[:, mask]
        else:
            raise ValueError("Invalid threshold: all features are discarded.")


class SelectFromModel(BaseEstimator, SelectorMixin):
    """Meta-transformer for selecting features based on importance weights.

    .. versionadded:: 0.17

    Parameters
    ----------
    estimator : object
        The base estimator from which the transformer is built.
        This can be both a fitted (if ``prefit`` is set to True)
        or a non-fitted estimator.

    threshold : string, float, optional default None
        The threshold value to use for feature selection. Features whose
        importance is greater or equal are kept while the others are
        discarded. If "median" (resp. "mean"), then the ``threshold`` value is
        the median (resp. the mean) of the feature importances. A scaling
        factor (e.g., "1.25*mean") may also be used. If None and if the
        estimator has a parameter penalty set to l1, either explicitly
        or implicitly (e.g, Lasso), the threshold used is 1e-5.
        Otherwise, "mean" is used by default.

    prefit : bool, default False
        Whether a prefit model is expected to be passed into the constructor
        directly or not. If True, ``transform`` must be called directly
        and SelectFromModel cannot be used with ``cross_val_score``,
        ``GridSearchCV`` and similar utilities that clone the estimator.
        Otherwise train the model using ``fit`` and then ``transform`` to do
        feature selection.

    Attributes
    ----------
    `estimator_`: an estimator
        The base estimator from which the transformer is built.
        This is stored only when a non-fitted estimator is passed to the
        ``SelectFromModel``, i.e when prefit is False.

    `threshold_`: float
        The threshold value used for feature selection.
    """
    def __init__(self, estimator, threshold=None, prefit=False):
        self.estimator = estimator
        self.threshold = threshold
        self.prefit = prefit

    def _get_support_mask(self):
        # SelectFromModel can directly call on transform.
        if self.prefit:
            estimator = self.estimator
        elif hasattr(self, 'estimator_'):
            estimator = self.estimator_
        else:
            raise ValueError(
                'Either fit the model before transform or set "prefit=True"'
                ' while passing the fitted estimator to the constructor.')
        scores = _get_feature_importances(estimator)
        self.threshold_ = _calculate_threshold(estimator, scores,
                                               self.threshold)
        return scores >= self.threshold_

    def fit(self, X, y=None, **fit_params):
        """Fit the SelectFromModel meta-transformer.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like, shape (n_samples,)
            The target values (integers that correspond to classes in
            classification, real numbers in regression).

        **fit_params : Other estimator specific parameters

        Returns
        -------
        self : object
            Returns self.
        """
        if self.prefit:
            raise NotFittedError(
                "Since 'prefit=True', call transform directly")
        if not hasattr(self, "estimator_"):
            self.estimator_ = clone(self.estimator)
        self.estimator_.fit(X, y, **fit_params)
        return self

    def partial_fit(self, X, y=None, **fit_params):
        """Fit the SelectFromModel meta-transformer only once.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like, shape (n_samples,)
            The target values (integers that correspond to classes in
            classification, real numbers in regression).

        **fit_params : Other estimator specific parameters

        Returns
        -------
        self : object
            Returns self.
        """
        if self.prefit:
            raise NotFittedError(
                "Since 'prefit=True', call transform directly")
        if not hasattr(self, "estimator_"):
            self.estimator_ = clone(self.estimator)
        self.estimator_.partial_fit(X, y, **fit_params)
        return self