File: test_gpr.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (316 lines) | stat: -rw-r--r-- 11,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""Testing for Gaussian process regression """

# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# License: BSD 3 clause

import numpy as np

from scipy.optimize import approx_fprime

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels \
    import RBF, ConstantKernel as C, WhiteKernel

from sklearn.utils.testing \
    import (assert_true, assert_greater, assert_array_less,
            assert_almost_equal, assert_equal)


def f(x):
    return x * np.sin(x)
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T
y = f(X).ravel()

fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
kernels = [RBF(length_scale=1.0), fixed_kernel,
           RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
           C(1.0, (1e-2, 1e2)) *
           RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
           C(1.0, (1e-2, 1e2)) *
           RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) +
           C(1e-5, (1e-5, 1e2)),
           C(0.1, (1e-2, 1e2)) *
           RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) +
           C(1e-5, (1e-5, 1e2))]


def test_gpr_interpolation():
    # Test the interpolating property for different kernels.
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        y_pred, y_cov = gpr.predict(X, return_cov=True)

        assert_true(np.allclose(y_pred, y))
        assert_true(np.allclose(np.diag(y_cov), 0.))


def test_lml_improving():
    # Test that hyperparameter-tuning improves log-marginal likelihood.
    for kernel in kernels:
        if kernel == fixed_kernel:
            continue
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta),
                       gpr.log_marginal_likelihood(kernel.theta))


def test_lml_precomputed():
    # Test that lml of optimized kernel is stored correctly.
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        assert_equal(gpr.log_marginal_likelihood(gpr.kernel_.theta),
                     gpr.log_marginal_likelihood())


def test_converged_to_local_maximum():
    # Test that we are in local maximum after hyperparameter-optimization.
    for kernel in kernels:
        if kernel == fixed_kernel:
            continue
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

        lml, lml_gradient = \
            gpr.log_marginal_likelihood(gpr.kernel_.theta, True)

        assert_true(np.all((np.abs(lml_gradient) < 1e-4) |
                           (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) |
                           (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1])))


def test_solution_inside_bounds():
    # Test that hyperparameter-optimization remains in bounds#
    for kernel in kernels:
        if kernel == fixed_kernel:
            continue
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

        bounds = gpr.kernel_.bounds
        max_ = np.finfo(gpr.kernel_.theta.dtype).max
        tiny = 1e-10
        bounds[~np.isfinite(bounds[:, 1]), 1] = max_

        assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny)
        assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny)


def test_lml_gradient():
    # Compare analytic and numeric gradient of log marginal likelihood.
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

        lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True)
        lml_gradient_approx = \
            approx_fprime(kernel.theta,
                          lambda theta: gpr.log_marginal_likelihood(theta,
                                                                    False),
                          1e-10)

        assert_almost_equal(lml_gradient, lml_gradient_approx, 3)


def test_prior():
    # Test that GP prior has mean 0 and identical variances.
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel)

        y_mean, y_cov = gpr.predict(X, return_cov=True)

        assert_almost_equal(y_mean, 0, 5)
        if len(gpr.kernel.theta) > 1:
            # XXX: quite hacky, works only for current kernels
            assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5)
        else:
            assert_almost_equal(np.diag(y_cov), 1, 5)


def test_sample_statistics():
    # Test that statistics of samples drawn from GP are correct.
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

        y_mean, y_cov = gpr.predict(X2, return_cov=True)

        samples = gpr.sample_y(X2, 300000)

        # More digits accuracy would require many more samples
        assert_almost_equal(y_mean, np.mean(samples, 1), 1)
        assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(),
                            np.var(samples, 1) / np.diag(y_cov).max(), 1)


def test_no_optimizer():
    # Test that kernel parameters are unmodified when optimizer is None.
    kernel = RBF(1.0)
    gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y)
    assert_equal(np.exp(gpr.kernel_.theta), 1.0)


def test_predict_cov_vs_std():
    # Test that predicted std.-dev. is consistent with cov's diagonal.
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        y_mean, y_cov = gpr.predict(X2, return_cov=True)
        y_mean, y_std = gpr.predict(X2, return_std=True)
        assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)


def test_anisotropic_kernel():
    # Test that GPR can identify meaningful anisotropic length-scales.
    # We learn a function which varies in one dimension ten-times slower
    # than in the other. The corresponding length-scales should differ by at
    # least a factor 5
    rng = np.random.RandomState(0)
    X = rng.uniform(-1, 1, (50, 2))
    y = X[:, 0] + 0.1 * X[:, 1]

    kernel = RBF([1.0, 1.0])
    gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
    assert_greater(np.exp(gpr.kernel_.theta[1]),
                   np.exp(gpr.kernel_.theta[0]) * 5)


def test_random_starts():
    # Test that an increasing number of random-starts of GP fitting only
    # increases the log marginal likelihood of the chosen theta.
    n_samples, n_features = 25, 2
    np.random.seed(0)
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features) * 2 - 1
    y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \
        + rng.normal(scale=0.1, size=n_samples)

    kernel = C(1.0, (1e-2, 1e2)) \
        * RBF(length_scale=[1.0] * n_features,
              length_scale_bounds=[(1e-4, 1e+2)] * n_features) \
        + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1))
    last_lml = -np.inf
    for n_restarts_optimizer in range(5):
        gp = GaussianProcessRegressor(
            kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
            random_state=0,).fit(X, y)
        lml = gp.log_marginal_likelihood(gp.kernel_.theta)
        assert_greater(lml, last_lml - np.finfo(np.float32).eps)
        last_lml = lml


def test_y_normalization():
    # Test normalization of the target values in GP

    # Fitting non-normalizing GP on normalized y and fitting normalizing GP
    # on unnormalized y should yield identical results
    y_mean = y.mean(0)
    y_norm = y - y_mean
    for kernel in kernels:
        # Fit non-normalizing GP on normalized y
        gpr = GaussianProcessRegressor(kernel=kernel)
        gpr.fit(X, y_norm)
        # Fit normalizing GP on unnormalized y
        gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        gpr_norm.fit(X, y)

        # Compare predicted mean, std-devs and covariances
        y_pred, y_pred_std = gpr.predict(X2, return_std=True)
        y_pred = y_mean + y_pred
        y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)

        assert_almost_equal(y_pred, y_pred_norm)
        assert_almost_equal(y_pred_std, y_pred_std_norm)

        _, y_cov = gpr.predict(X2, return_cov=True)
        _, y_cov_norm = gpr_norm.predict(X2, return_cov=True)
        assert_almost_equal(y_cov, y_cov_norm)


def test_y_multioutput():
    # Test that GPR can deal with multi-dimensional target values
    y_2d = np.vstack((y, y * 2)).T

    # Test for fixed kernel that first dimension of 2d GP equals the output
    # of 1d GP and that second dimension is twice as large
    kernel = RBF(length_scale=1.0)

    gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None,
                                   normalize_y=False)
    gpr.fit(X, y)

    gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None,
                                      normalize_y=False)
    gpr_2d.fit(X, y_2d)

    y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True)
    y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True)
    _, y_cov_1d = gpr.predict(X2, return_cov=True)
    _, y_cov_2d = gpr_2d.predict(X2, return_cov=True)

    assert_almost_equal(y_pred_1d, y_pred_2d[:, 0])
    assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)

    # Standard deviation and covariance do not depend on output
    assert_almost_equal(y_std_1d, y_std_2d)
    assert_almost_equal(y_cov_1d, y_cov_2d)

    y_sample_1d = gpr.sample_y(X2, n_samples=10)
    y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)
    assert_almost_equal(y_sample_1d, y_sample_2d[:, 0])

    # Test hyperparameter optimization
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        gpr.fit(X, y)

        gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        gpr_2d.fit(X, np.vstack((y, y)).T)

        assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4)


def test_custom_optimizer():
    # Test that GPR can use externally defined optimizers.
    # Define a dummy optimizer that simply tests 50 random hyperparameters
    def optimizer(obj_func, initial_theta, bounds):
        rng = np.random.RandomState(0)
        theta_opt, func_min = \
            initial_theta, obj_func(initial_theta, eval_gradient=False)
        for _ in range(50):
            theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
                                              np.minimum(1, bounds[:, 1])))
            f = obj_func(theta, eval_gradient=False)
            if f < func_min:
                theta_opt, func_min = theta, f
        return theta_opt, func_min

    for kernel in kernels:
        if kernel == fixed_kernel:
            continue
        gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer)
        gpr.fit(X, y)
        # Checks that optimizer improved marginal likelihood
        assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta),
                       gpr.log_marginal_likelihood(gpr.kernel.theta))


def test_duplicate_input():
    # Test GPR can handle two different output-values for the same input.
    for kernel in kernels:
        gpr_equal_inputs = \
            GaussianProcessRegressor(kernel=kernel, alpha=1e-2)
        gpr_similar_inputs = \
            GaussianProcessRegressor(kernel=kernel, alpha=1e-2)

        X_ = np.vstack((X, X[0]))
        y_ = np.hstack((y, y[0] + 1))
        gpr_equal_inputs.fit(X_, y_)

        X_ = np.vstack((X, X[0] + 1e-15))
        y_ = np.hstack((y, y[0] + 1))
        gpr_similar_inputs.fit(X_, y_)

        X_test = np.linspace(0, 10, 100)[:, None]
        y_pred_equal, y_std_equal = \
            gpr_equal_inputs.predict(X_test, return_std=True)
        y_pred_similar, y_std_similar = \
            gpr_similar_inputs.predict(X_test, return_std=True)

        assert_almost_equal(y_pred_equal, y_pred_similar)
        assert_almost_equal(y_std_equal, y_std_similar)