1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
# cython: boundscheck=False
# cython: wraparound=False
# cython: cdivision=True
# Author: Christopher Moody <chrisemoody@gmail.com>
# Author: Nick Travers <nickt@squareup.com>
# Implementation by Chris Moody & Nick Travers
# See http://homepage.tudelft.nl/19j49/t-SNE.html for reference
# implementations and papers describing the technique
from libc.stdlib cimport malloc, free
from libc.stdio cimport printf
from libc.math cimport sqrt, log
cimport numpy as np
import numpy as np
cdef char* EMPTY_STRING = ""
cdef extern from "math.h":
float fabsf(float x) nogil
# Round points differing by less than this amount
# effectively ignoring differences near the 32bit
# floating point precision
cdef float EPSILON = 1e-6
# This is effectively an ifdef statement in Cython
# It allows us to write printf debugging lines
# and remove them at compile time
cdef enum:
DEBUGFLAG = 0
cdef extern from "time.h":
# Declare only what is necessary from `tm` structure.
ctypedef long clock_t
clock_t clock() nogil
double CLOCKS_PER_SEC
cdef extern from "cblas.h":
float snrm2 "cblas_snrm2"(int N, float *X, int incX) nogil
cdef struct Node:
# Keep track of the center of mass
float* barycenter
# If this is a leaf, the position of the point within this leaf
float* leaf_point_position
# The number of points including all
# nodes below this one
long cumulative_size
# Number of points at this node
long size
# Index of the point at this node
# Only defined for non-empty leaf nodes
long point_index
# level = 0 is the root node
# And each subdivision adds 1 to the level
long level
# Left edge of this node
float* left_edge
# The center of this node, equal to le + w/2.0
float* center
# The width of this node -- used to calculate the opening
# angle. Equal to width = re - le
float* width
# The value of the maximum width w
float max_width
# Does this node have children?
# Default to leaf until we add points
int is_leaf
# Array of pointers to pointers of children
Node **children
# Keep a pointer to the parent
Node *parent
# Pointer to the tree this node belongs too
Tree* tree
cdef struct Tree:
# Holds a pointer to the root node
Node* root_node
# Number of dimensions in the ouput
int n_dimensions
# Total number of cells
long n_cells
# Total number of points
long n_points
# Spit out diagnostic information?
int verbose
# How many cells per node? Should go as 2 ** n_dimensionss
int n_cell_per_node
cdef Tree* init_tree(float[:] left_edge, float[:] width, int n_dimensions,
int verbose) nogil:
# tree is freed by free_tree
cdef Tree* tree = <Tree*> malloc(sizeof(Tree))
tree.n_dimensions = n_dimensions
tree.n_cells = 0
tree.n_points = 0
tree.verbose = verbose
tree.root_node = create_root(left_edge, width, n_dimensions)
tree.root_node.tree = tree
tree.n_cells += 1
tree.n_cell_per_node = 2 ** n_dimensions
if DEBUGFLAG:
printf("[t-SNE] Tree initialised. Left_edge = (%1.9e, %1.9e, %1.9e)\n",
left_edge[0], left_edge[1], left_edge[2])
printf("[t-SNE] Tree initialised. Width = (%1.9e, %1.9e, %1.9e)\n",
width[0], width[1], width[2])
return tree
cdef Node* create_root(float[:] left_edge, float[:] width, int n_dimensions) nogil:
# Create a default root node
cdef int ax
cdef int n_cell_per_node = 2 ** n_dimensions
# root is freed by free_tree
root = <Node*> malloc(sizeof(Node))
root.is_leaf = 1
root.parent = NULL
root.level = 0
root.cumulative_size = 0
root.size = 0
root.point_index = -1
root.max_width = 0.0
root.width = <float*> malloc(sizeof(float) * n_dimensions)
root.left_edge = <float*> malloc(sizeof(float) * n_dimensions)
root.center = <float*> malloc(sizeof(float) * n_dimensions)
root.barycenter = <float*> malloc(sizeof(float) * n_dimensions)
root.leaf_point_position= <float*> malloc(sizeof(float) * n_dimensions)
root.children = NULL
for ax in range(n_dimensions):
root.width[ax] = width[ax]
root.left_edge[ax] = left_edge[ax]
root.center[ax] = 0.0
root.barycenter[ax] = 0.
root.leaf_point_position[ax] = -1
for ax in range(n_dimensions):
root.max_width = max(root.max_width, root.width[ax])
if DEBUGFLAG:
printf("[t-SNE] Created root node %p\n", root)
return root
cdef Node* create_child(Node *parent, int[3] offset) nogil:
# Create a new child node with default parameters
cdef int ax
# these children are freed by free_recursive
child = <Node *> malloc(sizeof(Node))
child.is_leaf = 1
child.parent = parent
child.level = parent.level + 1
child.size = 0
child.cumulative_size = 0
child.point_index = -1
child.tree = parent.tree
child.max_width = 0.0
child.width = <float*> malloc(sizeof(float) * parent.tree.n_dimensions)
child.left_edge = <float*> malloc(sizeof(float) * parent.tree.n_dimensions)
child.center = <float*> malloc(sizeof(float) * parent.tree.n_dimensions)
child.barycenter = <float*> malloc(sizeof(float) * parent.tree.n_dimensions)
child.leaf_point_position = <float*> malloc(sizeof(float) * parent.tree.n_dimensions)
child.children = NULL
for ax in range(parent.tree.n_dimensions):
child.width[ax] = parent.width[ax] / 2.0
child.left_edge[ax] = parent.left_edge[ax] + offset[ax] * parent.width[ax] / 2.0
child.center[ax] = child.left_edge[ax] + child.width[ax] / 2.0
child.barycenter[ax] = 0.
child.leaf_point_position[ax] = -1.
for ax in range(parent.tree.n_dimensions):
child.max_width = max(child.max_width, child.width[ax])
child.tree.n_cells += 1
return child
cdef Node* select_child(Node *node, float[3] pos, long index) nogil:
# Find which sub-node a position should go into
# And return the appropriate node
cdef int* offset = <int*> malloc(sizeof(int) * node.tree.n_dimensions)
cdef int ax, idx
cdef Node* child
cdef int error
for ax in range(node.tree.n_dimensions):
offset[ax] = (pos[ax] - (node.left_edge[ax] + node.width[ax] / 2.0)) > 0.
idx = offset2index(offset, node.tree.n_dimensions)
child = node.children[idx]
if DEBUGFLAG:
printf("[t-SNE] Offset [%i, %i] with LE [%f, %f]\n",
offset[0], offset[1], child.left_edge[0], child.left_edge[1])
free(offset)
return child
cdef inline void index2offset(int* offset, int index, int n_dimensions) nogil:
# Convert a 1D index into N-D index; useful for indexing
# children of a quadtree, octree, N-tree
# Quite likely there's a fancy bitshift way of doing this
# since the offset is equivalent to the binary representation
# of the integer index
# We read the offset array left-to-right
# such that the least significat bit is on the right
cdef int rem, k, shift
for k in range(n_dimensions):
shift = n_dimensions -k -1
rem = ((index >> shift) << shift)
offset[k] = rem > 0
if DEBUGFLAG:
printf("i2o index %i k %i rem %i offset", index, k, rem)
for j in range(n_dimensions):
printf(" %i", offset[j])
printf(" n_dimensions %i\n", n_dimensions)
index -= rem
cdef inline int offset2index(int* offset, int n_dimensions) nogil:
# Calculate the 1:1 index for a given offset array
# We read the offset array right-to-left
# such that the least significat bit is on the right
cdef int dim
cdef int index = 0
for dim in range(n_dimensions):
index += (2 ** dim) * offset[n_dimensions - dim - 1]
if DEBUGFLAG:
printf("o2i index %i dim %i offset", index, dim)
for j in range(n_dimensions):
printf(" %i", offset[j])
printf(" n_dimensions %i\n", n_dimensions)
return index
cdef void subdivide(Node* node) nogil:
# This instantiates 2**n_dimensions = n_cell_per_node nodes for the current node
cdef int idx = 0
cdef int* offset = <int*> malloc(sizeof(int) * node.tree.n_dimensions)
node.is_leaf = False
node.children = <Node**> malloc(sizeof(Node*) * node.tree.n_cell_per_node)
for idx in range(node.tree.n_cell_per_node):
index2offset(offset, idx, node.tree.n_dimensions)
node.children[idx] = create_child(node, offset)
free(offset)
cdef int insert(Node *root, float pos[3], long point_index, long depth, long
duplicate_count) nogil:
# Introduce a new point into the tree
# by recursively inserting it and subdividng as necessary
# Carefully treat the case of identical points at the same node
# by increasing the root.size and tracking duplicate_count
cdef Node *child
cdef long i
cdef int ax
cdef int not_identical = 1
cdef int n_dimensions = root.tree.n_dimensions
if DEBUGFLAG:
printf("[t-SNE] [d=%i] Inserting pos %i [%f, %f] duplicate_count=%i "
"into child %p\n", depth, point_index, pos[0], pos[1],
duplicate_count, root)
# Increment the total number points including this
# node and below it
root.cumulative_size += duplicate_count
# Evaluate the new center of mass, weighting the previous
# center of mass against the new point data
cdef double frac_seen = <double>(root.cumulative_size - 1) / (<double>
root.cumulative_size)
cdef double frac_new = 1.0 / <double> root.cumulative_size
# Assert that duplicate_count > 0
if duplicate_count < 1:
return -1
# Assert that the point is inside the left & right edges
for ax in range(n_dimensions):
root.barycenter[ax] *= frac_seen
if (pos[ax] > (root.left_edge[ax] + root.width[ax] + EPSILON)):
printf("[t-SNE] Error: point (%1.9e) is above right edge of node "
"(%1.9e)\n", pos[ax], root.left_edge[ax] + root.width[ax])
return -1
if (pos[ax] < root.left_edge[ax] - EPSILON):
printf("[t-SNE] Error: point (%1.9e) is below left edge of node "
"(%1.9e)\n", pos[ax], root.left_edge[ax])
return -1
for ax in range(n_dimensions):
root.barycenter[ax] += pos[ax] * frac_new
# If this node is unoccupied, fill it.
# Otherwise, we need to insert recursively.
# Two insertion scenarios:
# 1) Insert into this node if it is a leaf and empty
# 2) Subdivide this node if it is currently occupied
if (root.size == 0) & root.is_leaf:
# Root node is empty and a leaf
if DEBUGFLAG:
printf("[t-SNE] [d=%i] Inserting [%f, %f] into blank cell\n", depth,
pos[0], pos[1])
for ax in range(n_dimensions):
root.leaf_point_position[ax] = pos[ax]
root.point_index = point_index
root.size = duplicate_count
return 0
else:
# Root node is occupied or not a leaf
if DEBUGFLAG:
printf("[t-SNE] [d=%i] Node %p is occupied or is a leaf.\n", depth,
root)
printf("[t-SNE] [d=%i] Node %p leaf = %i. Size %i\n", depth, root,
root.is_leaf, root.size)
if root.is_leaf & (root.size > 0):
# is a leaf node and is occupied
for ax in range(n_dimensions):
not_identical &= (fabsf(pos[ax] - root.leaf_point_position[ax]) < EPSILON)
not_identical &= (root.point_index != point_index)
if not_identical == 1:
root.size += duplicate_count
if DEBUGFLAG:
printf("[t-SNE] Warning: [d=%i] Detected identical "
"points. Returning. Leaf now has size %i\n",
depth, root.size)
return 0
# If necessary, subdivide this node before
# descending
if root.is_leaf:
if DEBUGFLAG:
printf("[t-SNE] [d=%i] Subdividing this leaf node %p\n", depth,
root)
subdivide(root)
# We have two points to relocate: the one previously
# at this node, and the new one we're attempting
# to insert
if root.size > 0:
child = select_child(root, root.leaf_point_position, root.point_index)
if DEBUGFLAG:
printf("[t-SNE] [d=%i] Relocating old point to node %p\n",
depth, child)
insert(child, root.leaf_point_position, root.point_index, depth + 1, root.size)
# Insert the new point
if DEBUGFLAG:
printf("[t-SNE] [d=%i] Selecting node for new point\n", depth)
child = select_child(root, pos, point_index)
if root.size > 0:
# Remove the point from this node
for ax in range(n_dimensions):
root.leaf_point_position[ax] = -1
root.size = 0
root.point_index = -1
return insert(child, pos, point_index, depth + 1, 1)
cdef int insert_many(Tree* tree, float[:,:] pos_array) nogil:
# Insert each data point into the tree one at a time
cdef long nrows = pos_array.shape[0]
cdef long i
cdef int ax
cdef float row[3]
cdef long err = 0
for i in range(nrows):
for ax in range(tree.n_dimensions):
row[ax] = pos_array[i, ax]
if DEBUGFLAG:
printf("[t-SNE] inserting point %i: [%f, %f]\n", i, row[0], row[1])
err = insert(tree.root_node, row, i, 0, 1)
if err != 0:
printf("[t-SNE] ERROR\n%s", EMPTY_STRING)
return err
tree.n_points += 1
return err
cdef int free_tree(Tree* tree) nogil:
cdef int check
cdef long* cnt = <long*> malloc(sizeof(long) * 3)
for i in range(3):
cnt[i] = 0
free_recursive(tree, tree.root_node, cnt)
check = cnt[0] == tree.n_cells
check &= cnt[2] == tree.n_points
free(tree)
free(cnt)
return check
cdef void free_post_children(Node *node) nogil:
free(node.width)
free(node.left_edge)
free(node.center)
free(node.barycenter)
free(node.leaf_point_position)
free(node)
cdef void free_recursive(Tree* tree, Node *root, long* counts) nogil:
# Free up all of the tree nodes recursively
# while counting the number of nodes visited
# and total number of data points removed
cdef int idx
cdef Node* child
if not root.is_leaf:
for idx in range(tree.n_cell_per_node):
child = root.children[idx]
free_recursive(tree, child, counts)
counts[0] += 1
if child.is_leaf:
counts[1] += 1
if child.size > 0:
counts[2] +=1
else:
free(child.children)
free_post_children(child)
if root == tree.root_node:
if not root.is_leaf:
free(root.children)
free_post_children(root)
cdef long count_points(Node* root, long count) nogil:
# Walk through the whole tree and count the number
# of points at the leaf nodes
if DEBUGFLAG:
printf("[t-SNE] Counting nodes at root node %p\n", root)
cdef Node* child
cdef int idx
if root.is_leaf:
count += root.size
if DEBUGFLAG :
printf("[t-SNE] %p is a leaf node, no children\n", root)
printf("[t-SNE] %i points in node %p\n", count, root)
return count
# Otherwise, get the children
for idx in range(root.tree.n_cell_per_node):
child = root.children[idx]
if DEBUGFLAG:
printf("[t-SNE] Counting points for child %p\n", child)
if child.is_leaf and child.size > 0:
if DEBUGFLAG:
printf("[t-SNE] Child has size %d\n", child.size)
count += child.size
elif not child.is_leaf:
if DEBUGFLAG:
printf("[t-SNE] Child is not a leaf. Descending\n%s", EMPTY_STRING)
count = count_points(child, count)
# else case is we have an empty leaf node
# which happens when we create a quadtree for
# one point, and then the other neighboring cells
# don't get filled in
if DEBUGFLAG:
printf("[t-SNE] %i points in this node\n", count)
return count
cdef float compute_gradient(float[:,:] val_P,
float[:,:] pos_reference,
np.int64_t[:,:] neighbors,
float[:,:] tot_force,
Node* root_node,
float theta,
float dof,
long start,
long stop) nogil:
# Having created the tree, calculate the gradient
# in two components, the positive and negative forces
cdef long i, coord
cdef int ax
cdef long n = pos_reference.shape[0]
cdef int n_dimensions = root_node.tree.n_dimensions
if root_node.tree.verbose > 11:
printf("[t-SNE] Allocating %i elements in force arrays\n",
n * n_dimensions * 2)
cdef float* sum_Q = <float*> malloc(sizeof(float))
cdef float* neg_f = <float*> malloc(sizeof(float) * n * n_dimensions)
cdef float* neg_f_fast = <float*> malloc(sizeof(float) * n * n_dimensions)
cdef float* pos_f = <float*> malloc(sizeof(float) * n * n_dimensions)
cdef clock_t t1, t2
cdef float sQ, error
sum_Q[0] = 0.0
t1 = clock()
compute_gradient_negative(val_P, pos_reference, neg_f, root_node, sum_Q,
dof, theta, start, stop)
t2 = clock()
if root_node.tree.verbose > 15:
printf("[t-SNE] Computing negative gradient: %e ticks\n", ((float) (t2 - t1)))
sQ = sum_Q[0]
t1 = clock()
error = compute_gradient_positive(val_P, pos_reference, neighbors, pos_f,
n_dimensions, dof, sQ, start, root_node.tree.verbose)
t2 = clock()
if root_node.tree.verbose > 15:
printf("[t-SNE] Computing positive gradient: %e ticks\n", ((float) (t2 - t1)))
for i in range(start, n):
for ax in range(n_dimensions):
coord = i * n_dimensions + ax
tot_force[i, ax] = pos_f[coord] - (neg_f[coord] / sum_Q[0])
free(sum_Q)
free(neg_f)
free(neg_f_fast)
free(pos_f)
return sQ
cdef float compute_gradient_positive(float[:,:] val_P,
float[:,:] pos_reference,
np.int64_t[:,:] neighbors,
float* pos_f,
int n_dimensions,
float dof,
float sum_Q,
np.int64_t start,
int verbose) nogil:
# Sum over the following expression for i not equal to j
# grad_i = p_ij (1 + ||y_i - y_j||^2)^-1 (y_i - y_j)
# This is equivalent to compute_edge_forces in the authors' code
# It just goes over the nearest neighbors instead of all the data points
# (unlike the non-nearest neighbors version of `compute_gradient_positive')
cdef:
int ax
long i, j, k
long K = neighbors.shape[1]
long n = val_P.shape[0]
float[3] buff
float D, Q, pij
float C = 0.0
float exponent = (dof + 1.0) / -2.0
cdef clock_t t1, t2
t1 = clock()
for i in range(start, n):
for ax in range(n_dimensions):
pos_f[i * n_dimensions + ax] = 0.0
for k in range(K):
j = neighbors[i, k]
# we don't need to exclude the i==j case since we've
# already thrown it out from the list of neighbors
D = 0.0
Q = 0.0
pij = val_P[i, j]
for ax in range(n_dimensions):
buff[ax] = pos_reference[i, ax] - pos_reference[j, ax]
D += buff[ax] ** 2.0
Q = (((1.0 + D) / dof) ** exponent)
D = pij * Q
Q /= sum_Q
C += pij * log((pij + EPSILON) / (Q + EPSILON))
for ax in range(n_dimensions):
pos_f[i * n_dimensions + ax] += D * buff[ax]
t2 = clock()
dt = ((float) (t2 - t1))
if verbose > 10:
printf("[t-SNE] Computed error=%1.4f in %1.1e ticks\n", C, dt)
return C
cdef void compute_gradient_negative(float[:,:] val_P,
float[:,:] pos_reference,
float* neg_f,
Node *root_node,
float* sum_Q,
float dof,
float theta,
long start,
long stop) nogil:
if stop == -1:
stop = pos_reference.shape[0]
cdef:
int ax
long i, j
long n = stop - start
float* force
float* iQ
float* pos
float* dist2s
long* sizes
float* deltas
long* l
int n_dimensions = root_node.tree.n_dimensions
float qijZ, mult
long idx,
long dta = 0
long dtb = 0
clock_t t1, t2, t3
float* neg_force
iQ = <float*> malloc(sizeof(float))
force = <float*> malloc(sizeof(float) * n_dimensions)
pos = <float*> malloc(sizeof(float) * n_dimensions)
dist2s = <float*> malloc(sizeof(float) * n)
sizes = <long*> malloc(sizeof(long) * n)
deltas = <float*> malloc(sizeof(float) * n * n_dimensions)
l = <long*> malloc(sizeof(long))
neg_force= <float*> malloc(sizeof(float) * n_dimensions)
for i in range(start, stop):
# Clear the arrays
for ax in range(n_dimensions):
force[ax] = 0.0
neg_force[ax] = 0.0
pos[ax] = pos_reference[i, ax]
iQ[0] = 0.0
l[0] = 0
# Find which nodes are summarizing and collect their centers of mass
# deltas, and sizes, into vectorized arrays
t1 = clock()
compute_non_edge_forces(root_node, theta, i, pos, force, dist2s,
sizes, deltas, l)
t2 = clock()
# Compute the t-SNE negative force
# for the digits dataset, walking the tree
# is about 10-15x more expensive than the
# following for loop
exponent = (dof + 1.0) / -2.0
for j in range(l[0]):
qijZ = ((1.0 + dist2s[j]) / dof) ** exponent
sum_Q[0] += sizes[j] * qijZ
mult = sizes[j] * qijZ * qijZ
for ax in range(n_dimensions):
idx = j * n_dimensions + ax
neg_force[ax] += mult * deltas[idx]
t3 = clock()
for ax in range(n_dimensions):
neg_f[i * n_dimensions + ax] = neg_force[ax]
dta += t2 - t1
dtb += t3 - t2
if root_node.tree.verbose > 20:
printf("[t-SNE] Tree: %i clock ticks | ", dta)
printf("Force computation: %i clock ticks\n", dtb)
free(iQ)
free(force)
free(pos)
free(dist2s)
free(sizes)
free(deltas)
free(l)
free(neg_force)
cdef void compute_non_edge_forces(Node* node,
float theta,
long point_index,
float* pos,
float* force,
float* dist2s,
long* sizes,
float* deltas,
long* l) nogil:
# Compute the t-SNE force on the point in pos given by point_index
cdef:
Node* child
int i, j
int n_dimensions = node.tree.n_dimensions
long idx, idx1
float dist_check
# There are no points below this node if cumulative_size == 0
# so do not bother to calculate any force contributions
# Also do not compute self-interactions
if node.cumulative_size > 0 and not (node.is_leaf and (node.point_index ==
point_index)):
# Compute distance between node center of mass and the reference point
# I've tried rewriting this in terms of BLAS functions, but it's about
# 1.5x worse when we do so, probbaly because the vectors are small
idx1 = l[0] * n_dimensions
deltas[idx1] = pos[0] - node.barycenter[0]
idx = idx1
for i in range(1, n_dimensions):
idx += 1
deltas[idx] = pos[i] - node.barycenter[i]
# do np.sqrt(np.sum(deltas**2.0))
dist2s[l[0]] = snrm2(n_dimensions, &deltas[idx1], 1)
# Check whether we can use this node as a summary
# It's a summary node if the angular size as measured from the point
# is relatively small (w.r.t. to theta) or if it is a leaf node.
# If it can be summarized, we use the cell center of mass
# Otherwise, we go a higher level of resolution and into the leaves.
if node.is_leaf or ((node.max_width / dist2s[l[0]]) < theta):
# Compute the t-SNE force between the reference point and the
# current node
sizes[l[0]] = node.cumulative_size
dist2s[l[0]] = dist2s[l[0]] * dist2s[l[0]]
l[0] += 1
else:
# Recursively apply Barnes-Hut to child nodes
for idx in range(node.tree.n_cell_per_node):
child = node.children[idx]
if child.cumulative_size == 0:
continue
compute_non_edge_forces(child, theta,
point_index, pos, force, dist2s, sizes, deltas,
l)
cdef float compute_error(float[:, :] val_P,
float[:, :] pos_reference,
np.int64_t[:,:] neighbors,
float sum_Q,
int n_dimensions,
int verbose) nogil:
cdef int i, j, ax
cdef int I = neighbors.shape[0]
cdef int K = neighbors.shape[1]
cdef float pij, Q
cdef float C = 0.0
cdef clock_t t1, t2
cdef float dt, delta
t1 = clock()
for i in range(I):
for k in range(K):
j = neighbors[i, k]
pij = val_P[i, j]
Q = 0.0
for ax in range(n_dimensions):
delta = (pos_reference[i, ax] - pos_reference[j, ax])
Q += delta * delta
Q = (1.0 / (sum_Q + Q * sum_Q))
C += pij * log((pij + EPSILON) / (Q + EPSILON))
t2 = clock()
dt = ((float) (t2 - t1))
if verbose > 10:
printf("[t-SNE] Computed error=%1.4f in %1.1e ticks\n", C, dt)
return C
def calculate_edge(pos_output):
# Make the boundaries slightly outside of the data
# to avoid floating point error near the edge
left_edge = np.min(pos_output, axis=0)
right_edge = np.max(pos_output, axis=0)
center = (right_edge + left_edge) * 0.5
width = np.maximum(np.subtract(right_edge, left_edge), EPSILON)
# Exagerate width to avoid boundary edge
width = width.astype(np.float32) * 1.001
left_edge = center - width / 2.0
right_edge = center + width / 2.0
return left_edge, right_edge, width
def gradient(float[:,:] pij_input,
float[:,:] pos_output,
np.int64_t[:,:] neighbors,
float[:,:] forces,
float theta,
int n_dimensions,
int verbose,
float dof = 1.0,
long skip_num_points=0):
# This function is designed to be called from external Python
# it passes the 'forces' array by reference and fills thats array
# up in-place
cdef float C
n = pos_output.shape[0]
left_edge, right_edge, width = calculate_edge(pos_output)
assert width.itemsize == 4
assert pij_input.itemsize == 4
assert pos_output.itemsize == 4
assert forces.itemsize == 4
m = "Number of neighbors must be < # of points - 1"
assert n - 1 >= neighbors.shape[1], m
m = "neighbors array and pos_output shapes are incompatible"
assert n == neighbors.shape[0], m
m = "Forces array and pos_output shapes are incompatible"
assert n == forces.shape[0], m
m = "Pij and pos_output shapes are incompatible"
assert n == pij_input.shape[0], m
m = "Pij and pos_output shapes are incompatible"
assert n == pij_input.shape[1], m
if verbose > 10:
printf("[t-SNE] Initializing tree of n_dimensions %i\n", n_dimensions)
cdef Tree* qt = init_tree(left_edge, width, n_dimensions, verbose)
if verbose > 10:
printf("[t-SNE] Inserting %i points\n", pos_output.shape[0])
err = insert_many(qt, pos_output)
assert err == 0, "[t-SNE] Insertion failed"
if verbose > 10:
# XXX: format hack to workaround lack of `const char *` type
# in the generated C code that triggers error with gcc 4.9
# and -Werror=format-security
printf("[t-SNE] Computing gradient\n%s", EMPTY_STRING)
sum_Q = compute_gradient(pij_input, pos_output, neighbors, forces,
qt.root_node, theta, dof, skip_num_points, -1)
C = compute_error(pij_input, pos_output, neighbors, sum_Q, n_dimensions,
verbose)
if verbose > 10:
# XXX: format hack to workaround lack of `const char *` type
# in the generated C code
# and -Werror=format-security
printf("[t-SNE] Checking tree consistency\n%s", EMPTY_STRING)
cdef long count = count_points(qt.root_node, 0)
m = ("Tree consistency failed: unexpected number of points=%i "
"at root node=%i" % (count, qt.root_node.cumulative_size))
assert count == qt.root_node.cumulative_size, m
m = "Tree consistency failed: unexpected number of points on the tree"
assert count == qt.n_points, m
free_tree(qt)
return C
# Helper functions
def check_quadtree(X, np.int64_t[:] counts):
"""
Helper function to access quadtree functions for testing
"""
X = X.astype(np.float32)
left_edge, right_edge, width = calculate_edge(X)
# Initialise a tree
qt = init_tree(left_edge, width, 2, 2)
# Insert data into the tree
insert_many(qt, X)
cdef long count = count_points(qt.root_node, 0)
counts[0] = count
counts[1] = qt.root_node.cumulative_size
counts[2] = qt.n_points
free_tree(qt)
return counts
cdef int helper_test_index2offset(int* check, int index, int n_dimensions):
cdef int* offset = <int*> malloc(sizeof(int) * n_dimensions)
cdef int error_check = 1
for i in range(n_dimensions):
offset[i] = 0
index2offset(offset, index, n_dimensions)
for i in range(n_dimensions):
error_check &= offset[i] == check[i]
free(offset)
return error_check
def test_index2offset():
ret = 1
ret &= helper_test_index2offset([1, 0, 1], 5, 3) == 1
ret &= helper_test_index2offset([0, 0, 0], 0, 3) == 1
ret &= helper_test_index2offset([0, 0, 1], 1, 3) == 1
ret &= helper_test_index2offset([0, 1, 0], 2, 3) == 1
ret &= helper_test_index2offset([0, 1, 1], 3, 3) == 1
ret &= helper_test_index2offset([1, 0, 0], 4, 3) == 1
return ret
def test_index_offset():
cdef int n_dimensions, idx, tidx, k
cdef int error_check = 1
cdef int* offset
for n_dimensions in range(2, 10):
offset = <int*> malloc(sizeof(int) * n_dimensions)
for k in range(n_dimensions):
offset[k] = 0
for idx in range(2 ** n_dimensions):
index2offset(offset, idx, n_dimensions)
tidx = offset2index(offset, n_dimensions)
error_check &= tidx == idx
assert error_check == 1
free(offset)
return error_check
|