File: test_locally_linear.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (136 lines) | stat: -rw-r--r-- 5,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from itertools import product
from nose.tools import assert_true

import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
from scipy import linalg

from sklearn import neighbors, manifold
from sklearn.manifold.locally_linear import barycenter_kneighbors_graph
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_raise_message

eigen_solvers = ['dense', 'arpack']


# ----------------------------------------------------------------------
# Test utility routines
def test_barycenter_kneighbors_graph():
    X = np.array([[0, 1], [1.01, 1.], [2, 0]])

    A = barycenter_kneighbors_graph(X, 1)
    assert_array_almost_equal(
        A.toarray(),
        [[0.,  1.,  0.],
         [1.,  0.,  0.],
         [0.,  1.,  0.]])

    A = barycenter_kneighbors_graph(X, 2)
    # check that columns sum to one
    assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3))
    pred = np.dot(A.toarray(), X)
    assert_less(linalg.norm(pred - X) / X.shape[0], 1)


# ----------------------------------------------------------------------
# Test LLE by computing the reconstruction error on some manifolds.

def test_lle_simple_grid():
    # note: ARPACK is numerically unstable, so this test will fail for
    #       some random seeds.  We choose 2 because the tests pass.
    rng = np.random.RandomState(2)

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(5), repeat=2)))
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    clf = manifold.LocallyLinearEmbedding(n_neighbors=5,
                                          n_components=n_components,
                                          random_state=rng)
    tol = 0.1

    N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
    reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro')
    assert_less(reconstruction_error, tol)

    for solver in eigen_solvers:
        clf.set_params(eigen_solver=solver)
        clf.fit(X)
        assert_true(clf.embedding_.shape[1] == n_components)
        reconstruction_error = linalg.norm(
            np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2

        assert_less(reconstruction_error, tol)
        assert_almost_equal(clf.reconstruction_error_,
                            reconstruction_error, decimal=1)

    # re-embed a noisy version of X using the transform method
    noise = rng.randn(*X.shape) / 100
    X_reembedded = clf.transform(X + noise)
    assert_less(linalg.norm(X_reembedded - clf.embedding_), tol)


def test_lle_manifold():
    rng = np.random.RandomState(0)
    # similar test on a slightly more complex manifold
    X = np.array(list(product(np.arange(18), repeat=2)))
    X = np.c_[X, X[:, 0] ** 2 / 18]
    X = X + 1e-10 * rng.uniform(size=X.shape)
    n_components = 2
    for method in ["standard", "hessian", "modified", "ltsa"]:
        clf = manifold.LocallyLinearEmbedding(n_neighbors=6,
                                              n_components=n_components,
                                              method=method, random_state=0)
        tol = 1.5 if method == "standard" else 3

        N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
        reconstruction_error = linalg.norm(np.dot(N, X) - X)
        assert_less(reconstruction_error, tol)

        for solver in eigen_solvers:
            clf.set_params(eigen_solver=solver)
            clf.fit(X)
            assert_true(clf.embedding_.shape[1] == n_components)
            reconstruction_error = linalg.norm(
                np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2
            details = ("solver: %s, method: %s" % (solver, method))
            assert_less(reconstruction_error, tol, msg=details)
            assert_less(np.abs(clf.reconstruction_error_ -
                               reconstruction_error),
                        tol * reconstruction_error, msg=details)


# Test the error raised when parameter passed to lle is invalid
def test_lle_init_parameters():
    X = np.random.rand(5, 3)

    clf = manifold.LocallyLinearEmbedding(eigen_solver="error")
    msg = "unrecognized eigen_solver 'error'"
    assert_raise_message(ValueError, msg, clf.fit, X)

    clf = manifold.LocallyLinearEmbedding(method="error")
    msg = "unrecognized method 'error'"
    assert_raise_message(ValueError, msg, clf.fit, X)


def test_pipeline():
    # check that LocallyLinearEmbedding works fine as a Pipeline
    # only checks that no error is raised.
    # TODO check that it actually does something useful
    from sklearn import pipeline, datasets
    X, y = datasets.make_blobs(random_state=0)
    clf = pipeline.Pipeline(
        [('filter', manifold.LocallyLinearEmbedding(random_state=0)),
         ('clf', neighbors.KNeighborsClassifier())])
    clf.fit(X, y)
    assert_less(.9, clf.score(X, y))


# Test the error raised when the weight matrix is singular
def test_singular_matrix():
    from nose.tools import assert_raises
    M = np.ones((10, 3))
    f = ignore_warnings
    assert_raises(ValueError, f(manifold.locally_linear_embedding),
                  M, 2, 1, method='standard', eigen_solver='arpack')