File: test_classification.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (1455 lines) | stat: -rw-r--r-- 56,780 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
from __future__ import division, print_function

import numpy as np
from scipy import linalg
from functools import partial
from itertools import product
import warnings

from sklearn import datasets
from sklearn import svm

from sklearn.datasets import make_multilabel_classification
from sklearn.preprocessing import label_binarize
from sklearn.utils.fixes import np_version
from sklearn.utils.validation import check_random_state

from sklearn.utils.testing import assert_raises, clean_warning_registry
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.mocking import MockDataFrame

from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from sklearn.metrics import fbeta_score
from sklearn.metrics import hamming_loss
from sklearn.metrics import hinge_loss
from sklearn.metrics import jaccard_similarity_score
from sklearn.metrics import log_loss
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import zero_one_loss
from sklearn.metrics import brier_score_loss

from sklearn.metrics.classification import _check_targets
from sklearn.exceptions import UndefinedMetricWarning

from scipy.spatial.distance import hamming as sp_hamming

###############################################################################
# Utilities for testing


def make_prediction(dataset=None, binary=False):
    """Make some classification predictions on a toy dataset using a SVC

    If binary is True restrict to a binary classification problem instead of a
    multiclass classification problem
    """

    if dataset is None:
        # import some data to play with
        dataset = datasets.load_iris()

    X = dataset.data
    y = dataset.target

    if binary:
        # restrict to a binary classification task
        X, y = X[y < 2], y[y < 2]

    n_samples, n_features = X.shape
    p = np.arange(n_samples)

    rng = check_random_state(37)
    rng.shuffle(p)
    X, y = X[p], y[p]
    half = int(n_samples / 2)

    # add noisy features to make the problem harder and avoid perfect results
    rng = np.random.RandomState(0)
    X = np.c_[X, rng.randn(n_samples, 200 * n_features)]

    # run classifier, get class probabilities and label predictions
    clf = svm.SVC(kernel='linear', probability=True, random_state=0)
    probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:])

    if binary:
        # only interested in probabilities of the positive case
        # XXX: do we really want a special API for the binary case?
        probas_pred = probas_pred[:, 1]

    y_pred = clf.predict(X[half:])
    y_true = y[half:]
    return y_true, y_pred, probas_pred


###############################################################################
# Tests


def test_multilabel_accuracy_score_subset_accuracy():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(accuracy_score(y1, y2), 0.5)
    assert_equal(accuracy_score(y1, y1), 1)
    assert_equal(accuracy_score(y2, y2), 1)
    assert_equal(accuracy_score(y2, np.logical_not(y2)), 0)
    assert_equal(accuracy_score(y1, np.logical_not(y1)), 0)
    assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0)
    assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0)


def test_precision_recall_f1_score_binary():
    # Test Precision Recall and F1 Score for binary classification task
    y_true, y_pred, _ = make_prediction(binary=True)

    # detailed measures for each class
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
    assert_array_almost_equal(p, [0.73, 0.85], 2)
    assert_array_almost_equal(r, [0.88, 0.68], 2)
    assert_array_almost_equal(f, [0.80, 0.76], 2)
    assert_array_equal(s, [25, 25])

    # individual scoring function that can be used for grid search: in the
    # binary class case the score is the value of the measure for the positive
    # class (e.g. label == 1). This is deprecated for average != 'binary'.
    for kwargs, my_assert in [({}, assert_no_warnings),
                              ({'average': 'binary'}, assert_no_warnings)]:
        ps = my_assert(precision_score, y_true, y_pred, **kwargs)
        assert_array_almost_equal(ps, 0.85, 2)

        rs = my_assert(recall_score, y_true, y_pred, **kwargs)
        assert_array_almost_equal(rs, 0.68, 2)

        fs = my_assert(f1_score, y_true, y_pred, **kwargs)
        assert_array_almost_equal(fs, 0.76, 2)

        assert_almost_equal(my_assert(fbeta_score, y_true, y_pred, beta=2,
                                      **kwargs),
                            (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2)


def test_precision_recall_f_binary_single_class():
    # Test precision, recall and F1 score behave with a single positive or
    # negative class
    # Such a case may occur with non-stratified cross-validation
    assert_equal(1., precision_score([1, 1], [1, 1]))
    assert_equal(1., recall_score([1, 1], [1, 1]))
    assert_equal(1., f1_score([1, 1], [1, 1]))

    assert_equal(0., precision_score([-1, -1], [-1, -1]))
    assert_equal(0., recall_score([-1, -1], [-1, -1]))
    assert_equal(0., f1_score([-1, -1], [-1, -1]))


@ignore_warnings
def test_precision_recall_f_extra_labels():
    # Test handling of explicit additional (not in input) labels to PRF
    y_true = [1, 3, 3, 2]
    y_pred = [1, 1, 3, 2]
    y_true_bin = label_binarize(y_true, classes=np.arange(5))
    y_pred_bin = label_binarize(y_pred, classes=np.arange(5))
    data = [(y_true, y_pred),
            (y_true_bin, y_pred_bin)]

    for i, (y_true, y_pred) in enumerate(data):
        # No average: zeros in array
        actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4],
                              average=None)
        assert_array_almost_equal([0., 1., 1., .5, 0.], actual)

        # Macro average is changed
        actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4],
                              average='macro')
        assert_array_almost_equal(np.mean([0., 1., 1., .5, 0.]), actual)

        # No effect otheriwse
        for average in ['micro', 'weighted', 'samples']:
            if average == 'samples' and i == 0:
                continue
            assert_almost_equal(recall_score(y_true, y_pred,
                                             labels=[0, 1, 2, 3, 4],
                                             average=average),
                                recall_score(y_true, y_pred, labels=None,
                                             average=average))

    # Error when introducing invalid label in multilabel case
    # (although it would only affect performance if average='macro'/None)
    for average in [None, 'macro', 'micro', 'samples']:
        assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin,
                      labels=np.arange(6), average=average)
        assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin,
                      labels=np.arange(-1, 4), average=average)


@ignore_warnings
def test_precision_recall_f_ignored_labels():
    # Test a subset of labels may be requested for PRF
    y_true = [1, 1, 2, 3]
    y_pred = [1, 3, 3, 3]
    y_true_bin = label_binarize(y_true, classes=np.arange(5))
    y_pred_bin = label_binarize(y_pred, classes=np.arange(5))
    data = [(y_true, y_pred),
            (y_true_bin, y_pred_bin)]

    for i, (y_true, y_pred) in enumerate(data):
        recall_13 = partial(recall_score, y_true, y_pred, labels=[1, 3])
        recall_all = partial(recall_score, y_true, y_pred, labels=None)

        assert_array_almost_equal([.5, 1.], recall_13(average=None))
        assert_almost_equal((.5 + 1.) / 2, recall_13(average='macro'))
        assert_almost_equal((.5 * 2 + 1. * 1) / 3,
                            recall_13(average='weighted'))
        assert_almost_equal(2. / 3, recall_13(average='micro'))

        # ensure the above were meaningful tests:
        for average in ['macro', 'weighted', 'micro']:
            assert_not_equal(recall_13(average=average),
                             recall_all(average=average))


def test_average_precision_score_score_non_binary_class():
    # Test that average_precision_score function returns an error when trying
    # to compute average_precision_score for multiclass task.
    rng = check_random_state(404)
    y_pred = rng.rand(10)

    # y_true contains three different class values
    y_true = rng.randint(0, 3, size=10)
    assert_raise_message(ValueError, "multiclass format is not supported",
                         average_precision_score, y_true, y_pred)


def test_average_precision_score_duplicate_values():
    # Duplicate values with precision-recall require a different
    # processing than when computing the AUC of a ROC, because the
    # precision-recall curve is a decreasing curve
    # The following situation corresponds to a perfect
    # test statistic, the average_precision_score should be 1
    y_true = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
    y_score = [0, .1, .1, .4, .5, .6, .6, .9, .9, 1, 1]
    assert_equal(average_precision_score(y_true, y_score), 1)


def test_average_precision_score_tied_values():
    # Here if we go from left to right in y_true, the 0 values are
    # are separated from the 1 values, so it appears that we've
    # Correctly sorted our classifications. But in fact the first two
    # values have the same score (0.5) and so the first two values
    # could be swapped around, creating an imperfect sorting. This
    # imperfection should come through in the end score, making it less
    # than one.
    y_true = [0, 1, 1]
    y_score = [.5, .5, .6]
    assert_not_equal(average_precision_score(y_true, y_score), 1.)


@ignore_warnings
def test_precision_recall_fscore_support_errors():
    y_true, y_pred, _ = make_prediction(binary=True)

    # Bad beta
    assert_raises(ValueError, precision_recall_fscore_support,
                  y_true, y_pred, beta=0.0)

    # Bad pos_label
    assert_raises(ValueError, precision_recall_fscore_support,
                  y_true, y_pred, pos_label=2, average='binary')

    # Bad average option
    assert_raises(ValueError, precision_recall_fscore_support,
                  [0, 1, 2], [1, 2, 0], average='mega')


def test_precision_recall_f_unused_pos_label():
    # Check warning that pos_label unused when set to non-default value
    # but average != 'binary'; even if data is binary.
    assert_warns_message(UserWarning,
                         "Note that pos_label (set to 2) is "
                         "ignored when average != 'binary' (got 'macro'). You "
                         "may use labels=[pos_label] to specify a single "
                         "positive class.", precision_recall_fscore_support,
                         [1, 2, 1], [1, 2, 2], pos_label=2, average='macro')


def test_confusion_matrix_binary():
    # Test confusion matrix - binary classification case
    y_true, y_pred, _ = make_prediction(binary=True)

    def test(y_true, y_pred):
        cm = confusion_matrix(y_true, y_pred)
        assert_array_equal(cm, [[22, 3], [8, 17]])

        tp, fp, fn, tn = cm.flatten()
        num = (tp * tn - fp * fn)
        den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))

        true_mcc = 0 if den == 0 else num / den
        mcc = matthews_corrcoef(y_true, y_pred)
        assert_array_almost_equal(mcc, true_mcc, decimal=2)
        assert_array_almost_equal(mcc, 0.57, decimal=2)

    test(y_true, y_pred)
    test([str(y) for y in y_true],
         [str(y) for y in y_pred])


def test_cohen_kappa():
    # These label vectors reproduce the contingency matrix from Artstein and
    # Poesio (2008), Table 1: np.array([[20, 20], [10, 50]]).
    y1 = np.array([0] * 40 + [1] * 60)
    y2 = np.array([0] * 20 + [1] * 20 + [0] * 10 + [1] * 50)
    kappa = cohen_kappa_score(y1, y2)
    assert_almost_equal(kappa, .348, decimal=3)
    assert_equal(kappa, cohen_kappa_score(y2, y1))

    # Add spurious labels and ignore them.
    y1 = np.append(y1, [2] * 4)
    y2 = np.append(y2, [2] * 4)
    assert_equal(cohen_kappa_score(y1, y2, labels=[0, 1]), kappa)

    assert_almost_equal(cohen_kappa_score(y1, y1), 1.)

    # Multiclass example: Artstein and Poesio, Table 4.
    y1 = np.array([0] * 46 + [1] * 44 + [2] * 10)
    y2 = np.array([0] * 52 + [1] * 32 + [2] * 16)
    assert_almost_equal(cohen_kappa_score(y1, y2), .8013, decimal=4)

    # Weighting example: none, linear, quadratic.
    y1 = np.array([0] * 46 + [1] * 44 + [2] * 10)
    y2 = np.array([0] * 50 + [1] * 40 + [2] * 10)
    assert_almost_equal(cohen_kappa_score(y1, y2), .9315, decimal=4)
    assert_almost_equal(cohen_kappa_score(y1, y2, weights="linear"), .9412, decimal=4)
    assert_almost_equal(cohen_kappa_score(y1, y2, weights="quadratic"), .9541, decimal=4)


@ignore_warnings
def test_matthews_corrcoef_nan():
    assert_equal(matthews_corrcoef([0], [1]), 0.0)
    assert_equal(matthews_corrcoef([0, 0], [0, 1]), 0.0)


def test_matthews_corrcoef_against_numpy_corrcoef():
    rng = np.random.RandomState(0)
    y_true = rng.randint(0, 2, size=20)
    y_pred = rng.randint(0, 2, size=20)

    assert_almost_equal(matthews_corrcoef(y_true, y_pred),
                        np.corrcoef(y_true, y_pred)[0, 1], 10)


def test_matthews_corrcoef():
    rng = np.random.RandomState(0)
    y_true = ["a" if i == 0 else "b" for i in rng.randint(0, 2, size=20)]

    # corrcoef of same vectors must be 1
    assert_almost_equal(matthews_corrcoef(y_true, y_true), 1.0)

    # corrcoef, when the two vectors are opposites of each other, should be -1
    y_true_inv = ["b" if i == "a" else "a" for i in y_true]

    assert_almost_equal(matthews_corrcoef(y_true, y_true_inv), -1)
    y_true_inv2 = label_binarize(y_true, ["a", "b"]) * -1
    assert_almost_equal(matthews_corrcoef(y_true, y_true_inv2), -1)

    # For the zero vector case, the corrcoef cannot be calculated and should
    # result in a RuntimeWarning
    mcc = assert_warns_message(RuntimeWarning, 'invalid value encountered',
                               matthews_corrcoef, [0, 0, 0, 0], [0, 0, 0, 0])

    # But will output 0
    assert_almost_equal(mcc, 0.)

    # And also for any other vector with 0 variance
    mcc = assert_warns_message(RuntimeWarning, 'invalid value encountered',
                               matthews_corrcoef, y_true,
                               rng.randint(-100, 100) * np.ones(20, dtype=int))

    # But will output 0
    assert_almost_equal(mcc, 0.)

    # These two vectors have 0 correlation and hence mcc should be 0
    y_1 = [1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1]
    y_2 = [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1]
    assert_almost_equal(matthews_corrcoef(y_1, y_2), 0.)

    # Check that sample weight is able to selectively exclude
    mask = [1] * 10 + [0] * 10
    # Now the first half of the vector elements are alone given a weight of 1
    # and hence the mcc will not be a perfect 0 as in the previous case
    assert_raises(AssertionError, assert_almost_equal,
                  matthews_corrcoef(y_1, y_2, sample_weight=mask), 0.)


def test_precision_recall_f1_score_multiclass():
    # Test Precision Recall and F1 Score for multiclass classification task
    y_true, y_pred, _ = make_prediction(binary=False)

    # compute scores with default labels introspection
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
    assert_array_almost_equal(p, [0.83, 0.33, 0.42], 2)
    assert_array_almost_equal(r, [0.79, 0.09, 0.90], 2)
    assert_array_almost_equal(f, [0.81, 0.15, 0.57], 2)
    assert_array_equal(s, [24, 31, 20])

    # averaging tests
    ps = precision_score(y_true, y_pred, pos_label=1, average='micro')
    assert_array_almost_equal(ps, 0.53, 2)

    rs = recall_score(y_true, y_pred, average='micro')
    assert_array_almost_equal(rs, 0.53, 2)

    fs = f1_score(y_true, y_pred, average='micro')
    assert_array_almost_equal(fs, 0.53, 2)

    ps = precision_score(y_true, y_pred, average='macro')
    assert_array_almost_equal(ps, 0.53, 2)

    rs = recall_score(y_true, y_pred, average='macro')
    assert_array_almost_equal(rs, 0.60, 2)

    fs = f1_score(y_true, y_pred, average='macro')
    assert_array_almost_equal(fs, 0.51, 2)

    ps = precision_score(y_true, y_pred, average='weighted')
    assert_array_almost_equal(ps, 0.51, 2)

    rs = recall_score(y_true, y_pred, average='weighted')
    assert_array_almost_equal(rs, 0.53, 2)

    fs = f1_score(y_true, y_pred, average='weighted')
    assert_array_almost_equal(fs, 0.47, 2)

    assert_raises(ValueError, precision_score, y_true, y_pred,
                  average="samples")
    assert_raises(ValueError, recall_score, y_true, y_pred, average="samples")
    assert_raises(ValueError, f1_score, y_true, y_pred, average="samples")
    assert_raises(ValueError, fbeta_score, y_true, y_pred, average="samples",
                  beta=0.5)

    # same prediction but with and explicit label ordering
    p, r, f, s = precision_recall_fscore_support(
        y_true, y_pred, labels=[0, 2, 1], average=None)
    assert_array_almost_equal(p, [0.83, 0.41, 0.33], 2)
    assert_array_almost_equal(r, [0.79, 0.90, 0.10], 2)
    assert_array_almost_equal(f, [0.81, 0.57, 0.15], 2)
    assert_array_equal(s, [24, 20, 31])


def test_precision_refcall_f1_score_multilabel_unordered_labels():
    # test that labels need not be sorted in the multilabel case
    y_true = np.array([[1, 1, 0, 0]])
    y_pred = np.array([[0, 0, 1, 1]])
    for average in ['samples', 'micro', 'macro', 'weighted', None]:
        p, r, f, s = precision_recall_fscore_support(
            y_true, y_pred, labels=[3, 0, 1, 2], warn_for=[], average=average)
        assert_array_equal(p, 0)
        assert_array_equal(r, 0)
        assert_array_equal(f, 0)
        if average is None:
            assert_array_equal(s, [0, 1, 1, 0])


def test_precision_recall_f1_score_binary_averaged():
    y_true = np.array([0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1])
    y_pred = np.array([1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1])

    # compute scores with default labels introspection
    ps, rs, fs, _ = precision_recall_fscore_support(y_true, y_pred,
                                                    average=None)
    p, r, f, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 average='macro')
    assert_equal(p, np.mean(ps))
    assert_equal(r, np.mean(rs))
    assert_equal(f, np.mean(fs))
    p, r, f, _ = precision_recall_fscore_support(y_true, y_pred,
                                                 average='weighted')
    support = np.bincount(y_true)
    assert_equal(p, np.average(ps, weights=support))
    assert_equal(r, np.average(rs, weights=support))
    assert_equal(f, np.average(fs, weights=support))


def test_zero_precision_recall():
    # Check that pathological cases do not bring NaNs

    old_error_settings = np.seterr(all='raise')

    try:
        y_true = np.array([0, 1, 2, 0, 1, 2])
        y_pred = np.array([2, 0, 1, 1, 2, 0])

        assert_almost_equal(precision_score(y_true, y_pred,
                                            average='macro'), 0.0, 2)
        assert_almost_equal(recall_score(y_true, y_pred, average='macro'),
                            0.0, 2)
        assert_almost_equal(f1_score(y_true, y_pred, average='macro'),
                            0.0, 2)

    finally:
        np.seterr(**old_error_settings)


def test_confusion_matrix_multiclass():
    # Test confusion matrix - multi-class case
    y_true, y_pred, _ = make_prediction(binary=False)

    def test(y_true, y_pred, string_type=False):
        # compute confusion matrix with default labels introspection
        cm = confusion_matrix(y_true, y_pred)
        assert_array_equal(cm, [[19, 4, 1],
                                [4, 3, 24],
                                [0, 2, 18]])

        # compute confusion matrix with explicit label ordering
        labels = ['0', '2', '1'] if string_type else [0, 2, 1]
        cm = confusion_matrix(y_true,
                              y_pred,
                              labels=labels)
        assert_array_equal(cm, [[19, 1, 4],
                                [0, 18, 2],
                                [4, 24, 3]])

    test(y_true, y_pred)
    test(list(str(y) for y in y_true),
         list(str(y) for y in y_pred),
         string_type=True)


def test_confusion_matrix_sample_weight():
    """Test confusion matrix - case with sample_weight"""
    y_true, y_pred, _ = make_prediction(binary=False)

    weights = [.1] * 25 + [.2] * 25 + [.3] * 25

    cm = confusion_matrix(y_true, y_pred, sample_weight=weights)

    true_cm = (.1 * confusion_matrix(y_true[:25], y_pred[:25]) +
               .2 * confusion_matrix(y_true[25:50], y_pred[25:50]) +
               .3 * confusion_matrix(y_true[50:], y_pred[50:]))

    assert_array_almost_equal(cm, true_cm)
    assert_raises(
        ValueError, confusion_matrix, y_true, y_pred,
        sample_weight=weights[:-1])


def test_confusion_matrix_multiclass_subset_labels():
    # Test confusion matrix - multi-class case with subset of labels
    y_true, y_pred, _ = make_prediction(binary=False)

    # compute confusion matrix with only first two labels considered
    cm = confusion_matrix(y_true, y_pred, labels=[0, 1])
    assert_array_equal(cm, [[19, 4],
                            [4, 3]])

    # compute confusion matrix with explicit label ordering for only subset
    # of labels
    cm = confusion_matrix(y_true, y_pred, labels=[2, 1])
    assert_array_equal(cm, [[18, 2],
                            [24, 3]])

    # a label not in y_true should result in zeros for that row/column
    extra_label = np.max(y_true) + 1
    cm = confusion_matrix(y_true, y_pred, labels=[2, extra_label])
    assert_array_equal(cm, [[18, 0],
                            [0, 0]])

    # check for exception when none of the specified labels are in y_true
    assert_raises(ValueError, confusion_matrix, y_true, y_pred,
                  labels=[extra_label, extra_label + 1])


def test_classification_report_multiclass():
    # Test performance report
    iris = datasets.load_iris()
    y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)

    # print classification report with class names
    expected_report = """\
             precision    recall  f1-score   support

     setosa       0.83      0.79      0.81        24
 versicolor       0.33      0.10      0.15        31
  virginica       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(
        y_true, y_pred, labels=np.arange(len(iris.target_names)),
        target_names=iris.target_names)
    assert_equal(report, expected_report)
    # print classification report with label detection
    expected_report = """\
             precision    recall  f1-score   support

          0       0.83      0.79      0.81        24
          1       0.33      0.10      0.15        31
          2       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_classification_report_multiclass_with_digits():
    # Test performance report with added digits in floating point values
    iris = datasets.load_iris()
    y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)

    # print classification report with class names
    expected_report = """\
             precision    recall  f1-score   support

     setosa    0.82609   0.79167   0.80851        24
 versicolor    0.33333   0.09677   0.15000        31
  virginica    0.41860   0.90000   0.57143        20

avg / total    0.51375   0.53333   0.47310        75
"""
    report = classification_report(
        y_true, y_pred, labels=np.arange(len(iris.target_names)),
        target_names=iris.target_names, digits=5)
    assert_equal(report, expected_report)
    # print classification report with label detection
    expected_report = """\
             precision    recall  f1-score   support

          0       0.83      0.79      0.81        24
          1       0.33      0.10      0.15        31
          2       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_classification_report_multiclass_with_string_label():
    y_true, y_pred, _ = make_prediction(binary=False)

    y_true = np.array(["blue", "green", "red"])[y_true]
    y_pred = np.array(["blue", "green", "red"])[y_pred]

    expected_report = """\
             precision    recall  f1-score   support

       blue       0.83      0.79      0.81        24
      green       0.33      0.10      0.15        31
        red       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)

    expected_report = """\
             precision    recall  f1-score   support

          a       0.83      0.79      0.81        24
          b       0.33      0.10      0.15        31
          c       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred,
                                   target_names=["a", "b", "c"])
    assert_equal(report, expected_report)


def test_classification_report_multiclass_with_unicode_label():
    y_true, y_pred, _ = make_prediction(binary=False)

    labels = np.array([u"blue\xa2", u"green\xa2", u"red\xa2"])
    y_true = labels[y_true]
    y_pred = labels[y_pred]

    expected_report = u"""\
             precision    recall  f1-score   support

      blue\xa2       0.83      0.79      0.81        24
     green\xa2       0.33      0.10      0.15        31
       red\xa2       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    if np_version[:3] < (1, 7, 0):
        expected_message = ("NumPy < 1.7.0 does not implement"
                            " searchsorted on unicode data correctly.")
        assert_raise_message(RuntimeError, expected_message,
                             classification_report, y_true, y_pred)
    else:
        report = classification_report(y_true, y_pred)
        assert_equal(report, expected_report)


def test_classification_report_multiclass_with_long_string_label():
    y_true, y_pred, _ = make_prediction(binary=False)

    labels = np.array(["blue", "green"*5, "red"])
    y_true = labels[y_true]
    y_pred = labels[y_pred]

    expected_report = """\
                           precision    recall  f1-score   support

                     blue       0.83      0.79      0.81        24
greengreengreengreengreen       0.33      0.10      0.15        31
                      red       0.42      0.90      0.57        20

              avg / total       0.51      0.53      0.47        75
"""

    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_multilabel_classification_report():
    n_classes = 4
    n_samples = 50

    _, y_true = make_multilabel_classification(n_features=1,
                                               n_samples=n_samples,
                                               n_classes=n_classes,
                                               random_state=0)

    _, y_pred = make_multilabel_classification(n_features=1,
                                               n_samples=n_samples,
                                               n_classes=n_classes,
                                               random_state=1)

    expected_report = """\
             precision    recall  f1-score   support

          0       0.50      0.67      0.57        24
          1       0.51      0.74      0.61        27
          2       0.29      0.08      0.12        26
          3       0.52      0.56      0.54        27

avg / total       0.45      0.51      0.46       104
"""

    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_multilabel_zero_one_loss_subset():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(zero_one_loss(y1, y2), 0.5)
    assert_equal(zero_one_loss(y1, y1), 0)
    assert_equal(zero_one_loss(y2, y2), 0)
    assert_equal(zero_one_loss(y2, np.logical_not(y2)), 1)
    assert_equal(zero_one_loss(y1, np.logical_not(y1)), 1)
    assert_equal(zero_one_loss(y1, np.zeros(y1.shape)), 1)
    assert_equal(zero_one_loss(y2, np.zeros(y1.shape)), 1)


def test_multilabel_hamming_loss():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])
    w = np.array([1, 3])

    assert_equal(hamming_loss(y1, y2), 1 / 6)
    assert_equal(hamming_loss(y1, y1), 0)
    assert_equal(hamming_loss(y2, y2), 0)
    assert_equal(hamming_loss(y2, 1 - y2), 1)
    assert_equal(hamming_loss(y1, 1 - y1), 1)
    assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6)
    assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5)
    assert_equal(hamming_loss(y1, y2, sample_weight=w), 1. / 12)
    assert_equal(hamming_loss(y1, 1-y2, sample_weight=w), 11. / 12)
    assert_equal(hamming_loss(y1, np.zeros_like(y1), sample_weight=w), 2. / 3)
    # sp_hamming only works with 1-D arrays
    assert_equal(hamming_loss(y1[0], y2[0]), sp_hamming(y1[0], y2[0]))
    assert_warns(DeprecationWarning, hamming_loss, y1, y2, classes=[0, 1])


def test_multilabel_jaccard_similarity_score():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    # size(y1 \inter y2) = [1, 2]
    # size(y1 \union y2) = [2, 2]

    assert_equal(jaccard_similarity_score(y1, y2), 0.75)
    assert_equal(jaccard_similarity_score(y1, y1), 1)
    assert_equal(jaccard_similarity_score(y2, y2), 1)
    assert_equal(jaccard_similarity_score(y2, np.logical_not(y2)), 0)
    assert_equal(jaccard_similarity_score(y1, np.logical_not(y1)), 0)
    assert_equal(jaccard_similarity_score(y1, np.zeros(y1.shape)), 0)
    assert_equal(jaccard_similarity_score(y2, np.zeros(y1.shape)), 0)


@ignore_warnings
def test_precision_recall_f1_score_multilabel_1():
    # Test precision_recall_f1_score on a crafted multilabel example
    # First crafted example

    y_true = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1]])
    y_pred = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 1, 0]])

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)

    # tp = [0, 1, 1, 0]
    # fn = [1, 0, 0, 1]
    # fp = [1, 1, 0, 0]
    # Check per class

    assert_array_almost_equal(p, [0.0, 0.5, 1.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 1.0, 1.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2)
    assert_array_almost_equal(s, [1, 1, 1, 1], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.83, 1, 0], 2)

    # Check macro
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 1.5 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2.5 / 1.5 * 0.25)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"),
                        np.mean(f2))

    # Check micro
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 0.5)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    # Check weighted
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 1.5 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2.5 / 1.5 * 0.25)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))
    # Check samples
    # |h(x_i) inter y_i | = [0, 1, 1]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [1, 1, 2]
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 0.5)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"),
                        0.5)


@ignore_warnings
def test_precision_recall_f1_score_multilabel_2():
    # Test precision_recall_f1_score on a crafted multilabel example 2
    # Second crafted example
    y_true = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0]])
    y_pred = np.array([[0, 0, 0, 1], [0, 0, 0, 1], [1, 1, 0, 0]])

    # tp = [ 0.  1.  0.  0.]
    # fp = [ 1.  0.  0.  2.]
    # fn = [ 1.  1.  1.  0.]

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average=None)
    assert_array_almost_equal(p, [0.0, 1.0, 0.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 0.5, 0.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 0.66, 0.0, 0.0], 2)
    assert_array_almost_equal(s, [1, 2, 1, 0], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.55, 0, 0], 2)

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 0.25)
    assert_almost_equal(r, 0.25)
    assert_almost_equal(f, 2 * 0.25 * 0.25 / 0.5)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 0.25)
    assert_almost_equal(r, 0.125)
    assert_almost_equal(f, 2 / 12)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="macro"),
                        np.mean(f2))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 2 / 4)
    assert_almost_equal(r, 1 / 4)
    assert_almost_equal(f, 2 / 3 * 2 / 4)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    # Check samples
    # |h(x_i) inter y_i | = [0, 0, 1]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [1, 1, 2]

    assert_almost_equal(p, 1 / 6)
    assert_almost_equal(r, 1 / 6)
    assert_almost_equal(f, 2 / 4 * 1 / 3)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="samples"),
                        0.1666, 2)


@ignore_warnings
def test_precision_recall_f1_score_with_an_empty_prediction():
    y_true = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0]])
    y_pred = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 1, 0]])

    # true_pos = [ 0.  1.  1.  0.]
    # false_pos = [ 0.  0.  0.  1.]
    # false_neg = [ 1.  1.  0.  0.]
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average=None)
    assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2)
    assert_array_almost_equal(s, [1, 2, 1, 0], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2)

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 1.5 / 4)
    assert_almost_equal(f, 2.5 / (4 * 1.5))
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="macro"),
                        np.mean(f2))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 2 / 3)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5))
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 3 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, (2 / 1.5 + 1) / 4)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    # |h(x_i) inter y_i | = [0, 0, 2]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [0, 1, 2]
    assert_almost_equal(p, 1 / 3)
    assert_almost_equal(r, 1 / 3)
    assert_almost_equal(f, 1 / 3)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="samples"),
                        0.333, 2)


def test_precision_recall_f1_no_labels():
    y_true = np.zeros((20, 3))
    y_pred = np.zeros_like(y_true)

    # tp = [0, 0, 0]
    # fn = [0, 0, 0]
    # fp = [0, 0, 0]
    # support = [0, 0, 0]
    # |y_hat_i inter y_i | = [0, 0, 0]
    # |y_i| = [0, 0, 0]
    # |y_hat_i| = [0, 0, 0]

    for beta in [1]:
        p, r, f, s = assert_warns(UndefinedMetricWarning,
                                  precision_recall_fscore_support,
                                  y_true, y_pred, average=None, beta=beta)
        assert_array_almost_equal(p, [0, 0, 0], 2)
        assert_array_almost_equal(r, [0, 0, 0], 2)
        assert_array_almost_equal(f, [0, 0, 0], 2)
        assert_array_almost_equal(s, [0, 0, 0], 2)

        fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
                             y_true, y_pred, beta=beta, average=None)
        assert_array_almost_equal(fbeta, [0, 0, 0], 2)

        for average in ["macro", "micro", "weighted", "samples"]:
            p, r, f, s = assert_warns(UndefinedMetricWarning,
                                      precision_recall_fscore_support,
                                      y_true, y_pred, average=average,
                                      beta=beta)
            assert_almost_equal(p, 0)
            assert_almost_equal(r, 0)
            assert_almost_equal(f, 0)
            assert_equal(s, None)

            fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
                                 y_true, y_pred,
                                 beta=beta, average=average)
            assert_almost_equal(fbeta, 0)


def test_prf_warnings():
    # average of per-label scores
    f, w = precision_recall_fscore_support, UndefinedMetricWarning
    my_assert = assert_warns_message
    for average in [None, 'weighted', 'macro']:
        msg = ('Precision and F-score are ill-defined and '
               'being set to 0.0 in labels with no predicted samples.')
        my_assert(w, msg, f, [0, 1, 2], [1, 1, 2], average=average)

        msg = ('Recall and F-score are ill-defined and '
               'being set to 0.0 in labels with no true samples.')
        my_assert(w, msg, f, [1, 1, 2], [0, 1, 2], average=average)

    # average of per-sample scores
    msg = ('Precision and F-score are ill-defined and '
           'being set to 0.0 in samples with no predicted labels.')
    my_assert(w, msg, f, np.array([[1, 0], [1, 0]]),
              np.array([[1, 0], [0, 0]]), average='samples')

    msg = ('Recall and F-score are ill-defined and '
           'being set to 0.0 in samples with no true labels.')
    my_assert(w, msg, f, np.array([[1, 0], [0, 0]]),
              np.array([[1, 0], [1, 0]]),
              average='samples')

    # single score: micro-average
    msg = ('Precision and F-score are ill-defined and '
           'being set to 0.0 due to no predicted samples.')
    my_assert(w, msg, f, np.array([[1, 1], [1, 1]]),
              np.array([[0, 0], [0, 0]]), average='micro')

    msg = ('Recall and F-score are ill-defined and '
           'being set to 0.0 due to no true samples.')
    my_assert(w, msg, f, np.array([[0, 0], [0, 0]]),
              np.array([[1, 1], [1, 1]]), average='micro')

    # single postive label
    msg = ('Precision and F-score are ill-defined and '
           'being set to 0.0 due to no predicted samples.')
    my_assert(w, msg, f, [1, 1], [-1, -1], average='binary')

    msg = ('Recall and F-score are ill-defined and '
           'being set to 0.0 due to no true samples.')
    my_assert(w, msg, f, [-1, -1], [1, 1], average='binary')


def test_recall_warnings():
    assert_no_warnings(recall_score,
                       np.array([[1, 1], [1, 1]]),
                       np.array([[0, 0], [0, 0]]),
                       average='micro')
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')
        recall_score(np.array([[0, 0], [0, 0]]),
                     np.array([[1, 1], [1, 1]]),
                     average='micro')
        assert_equal(str(record.pop().message),
                     'Recall is ill-defined and '
                     'being set to 0.0 due to no true samples.')


def test_precision_warnings():
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')

        precision_score(np.array([[1, 1], [1, 1]]),
                        np.array([[0, 0], [0, 0]]),
                        average='micro')
        assert_equal(str(record.pop().message),
                     'Precision is ill-defined and '
                     'being set to 0.0 due to no predicted samples.')

    assert_no_warnings(precision_score,
                       np.array([[0, 0], [0, 0]]),
                       np.array([[1, 1], [1, 1]]),
                       average='micro')


def test_fscore_warnings():
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')

        for score in [f1_score, partial(fbeta_score, beta=2)]:
            score(np.array([[1, 1], [1, 1]]),
                  np.array([[0, 0], [0, 0]]),
                  average='micro')
            assert_equal(str(record.pop().message),
                         'F-score is ill-defined and '
                         'being set to 0.0 due to no predicted samples.')
            score(np.array([[0, 0], [0, 0]]),
                  np.array([[1, 1], [1, 1]]),
                  average='micro')
            assert_equal(str(record.pop().message),
                         'F-score is ill-defined and '
                         'being set to 0.0 due to no true samples.')


def test_prf_average_binary_data_non_binary():
    # Error if user does not explicitly set non-binary average mode
    y_true_mc = [1, 2, 3, 3]
    y_pred_mc = [1, 2, 3, 1]
    y_true_ind = np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])
    y_pred_ind = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])

    for y_true, y_pred, y_type in [
        (y_true_mc, y_pred_mc, 'multiclass'),
        (y_true_ind, y_pred_ind, 'multilabel-indicator'),
    ]:
        for metric in [precision_score, recall_score, f1_score,
                       partial(fbeta_score, beta=2)]:
            assert_raise_message(ValueError,
                                 "Target is %s but average='binary'. Please "
                                 "choose another average setting." % y_type,
                                 metric, y_true, y_pred)


def test__check_targets():
    # Check that _check_targets correctly merges target types, squeezes
    # output and fails if input lengths differ.
    IND = 'multilabel-indicator'
    MC = 'multiclass'
    BIN = 'binary'
    CNT = 'continuous'
    MMC = 'multiclass-multioutput'
    MCN = 'continuous-multioutput'
    # all of length 3
    EXAMPLES = [
        (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])),
        # must not be considered binary
        (IND, np.array([[0, 1], [1, 0], [1, 1]])),
        (MC, [2, 3, 1]),
        (BIN, [0, 1, 1]),
        (CNT, [0., 1.5, 1.]),
        (MC, np.array([[2], [3], [1]])),
        (BIN, np.array([[0], [1], [1]])),
        (CNT, np.array([[0.], [1.5], [1.]])),
        (MMC, np.array([[0, 2], [1, 3], [2, 3]])),
        (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])),
    ]
    # expected type given input types, or None for error
    # (types will be tried in either order)
    EXPECTED = {
        (IND, IND): IND,
        (MC, MC): MC,
        (BIN, BIN): BIN,

        (MC, IND): None,
        (BIN, IND): None,
        (BIN, MC): MC,

        # Disallowed types
        (CNT, CNT): None,
        (MMC, MMC): None,
        (MCN, MCN): None,
        (IND, CNT): None,
        (MC, CNT): None,
        (BIN, CNT): None,
        (MMC, CNT): None,
        (MCN, CNT): None,
        (IND, MMC): None,
        (MC, MMC): None,
        (BIN, MMC): None,
        (MCN, MMC): None,
        (IND, MCN): None,
        (MC, MCN): None,
        (BIN, MCN): None,
    }

    for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2):
        try:
            expected = EXPECTED[type1, type2]
        except KeyError:
            expected = EXPECTED[type2, type1]
        if expected is None:
            assert_raises(ValueError, _check_targets, y1, y2)

            if type1 != type2:
                assert_raise_message(
                    ValueError,
                    "Can't handle mix of {0} and {1}".format(type1, type2),
                    _check_targets, y1, y2)

            else:
                if type1 not in (BIN, MC, IND):
                    assert_raise_message(ValueError,
                                         "{0} is not supported".format(type1),
                                         _check_targets, y1, y2)

        else:
            merged_type, y1out, y2out = _check_targets(y1, y2)
            assert_equal(merged_type, expected)
            if merged_type.startswith('multilabel'):
                assert_equal(y1out.format, 'csr')
                assert_equal(y2out.format, 'csr')
            else:
                assert_array_equal(y1out, np.squeeze(y1))
                assert_array_equal(y2out, np.squeeze(y2))
            assert_raises(ValueError, _check_targets, y1[:-1], y2)

    # Make sure seq of seq is not supported
    y1 = [(1, 2,), (0, 2, 3)]
    y2 = [(2,), (0, 2,)]
    msg = ('You appear to be using a legacy multi-label data representation. '
           'Sequence of sequences are no longer supported; use a binary array'
           ' or sparse matrix instead.')
    assert_raise_message(ValueError, msg, _check_targets, y1, y2)


def test_hinge_loss_binary():
    y_true = np.array([-1, 1, 1, -1])
    pred_decision = np.array([-8.5, 0.5, 1.5, -0.3])
    assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4)

    y_true = np.array([0, 2, 2, 0])
    pred_decision = np.array([-8.5, 0.5, 1.5, -0.3])
    assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4)


def test_hinge_loss_multiclass():
    pred_decision = np.array([
        [+0.36, -0.17, -0.58, -0.99],
        [-0.54, -0.37, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17],
        [-0.54, -0.38, -0.48, -0.58],
        [-2.36, -0.79, -0.27, +0.24],
        [-1.45, -0.58, -0.38, -0.17]
    ])
    y_true = np.array([0, 1, 2, 1, 3, 2])
    dummy_losses = np.array([
        1 - pred_decision[0][0] + pred_decision[0][1],
        1 - pred_decision[1][1] + pred_decision[1][2],
        1 - pred_decision[2][2] + pred_decision[2][3],
        1 - pred_decision[3][1] + pred_decision[3][2],
        1 - pred_decision[4][3] + pred_decision[4][2],
        1 - pred_decision[5][2] + pred_decision[5][3]
    ])
    dummy_losses[dummy_losses <= 0] = 0
    dummy_hinge_loss = np.mean(dummy_losses)
    assert_equal(hinge_loss(y_true, pred_decision),
                 dummy_hinge_loss)


def test_hinge_loss_multiclass_missing_labels_with_labels_none():
    y_true = np.array([0, 1, 2, 2])
    pred_decision = np.array([
        [+1.27, 0.034, -0.68, -1.40],
        [-1.45, -0.58, -0.38, -0.17],
        [-2.36, -0.79, -0.27, +0.24],
        [-2.36, -0.79, -0.27, +0.24]
    ])
    error_message = ("Please include all labels in y_true "
                     "or pass labels as third argument")
    assert_raise_message(ValueError,
                         error_message,
                         hinge_loss, y_true, pred_decision)


def test_hinge_loss_multiclass_with_missing_labels():
    pred_decision = np.array([
        [+0.36, -0.17, -0.58, -0.99],
        [-0.55, -0.38, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17],
        [-0.55, -0.38, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17]
    ])
    y_true = np.array([0, 1, 2, 1, 2])
    labels = np.array([0, 1, 2, 3])
    dummy_losses = np.array([
        1 - pred_decision[0][0] + pred_decision[0][1],
        1 - pred_decision[1][1] + pred_decision[1][2],
        1 - pred_decision[2][2] + pred_decision[2][3],
        1 - pred_decision[3][1] + pred_decision[3][2],
        1 - pred_decision[4][2] + pred_decision[4][3]
    ])
    dummy_losses[dummy_losses <= 0] = 0
    dummy_hinge_loss = np.mean(dummy_losses)
    assert_equal(hinge_loss(y_true, pred_decision, labels=labels),
                 dummy_hinge_loss)


def test_hinge_loss_multiclass_invariance_lists():
    # Currently, invariance of string and integer labels cannot be tested
    # in common invariance tests because invariance tests for multiclass
    # decision functions is not implemented yet.
    y_true = ['blue', 'green', 'red',
              'green', 'white', 'red']
    pred_decision = [
        [+0.36, -0.17, -0.58, -0.99],
        [-0.55, -0.38, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17],
        [-0.55, -0.38, -0.48, -0.58],
        [-2.36, -0.79, -0.27, +0.24],
        [-1.45, -0.58, -0.38, -0.17]]
    dummy_losses = np.array([
        1 - pred_decision[0][0] + pred_decision[0][1],
        1 - pred_decision[1][1] + pred_decision[1][2],
        1 - pred_decision[2][2] + pred_decision[2][3],
        1 - pred_decision[3][1] + pred_decision[3][2],
        1 - pred_decision[4][3] + pred_decision[4][2],
        1 - pred_decision[5][2] + pred_decision[5][3]
    ])
    dummy_losses[dummy_losses <= 0] = 0
    dummy_hinge_loss = np.mean(dummy_losses)
    assert_equal(hinge_loss(y_true, pred_decision),
                 dummy_hinge_loss)


def test_log_loss():
    # binary case with symbolic labels ("no" < "yes")
    y_true = ["no", "no", "no", "yes", "yes", "yes"]
    y_pred = np.array([[0.5, 0.5], [0.1, 0.9], [0.01, 0.99],
                       [0.9, 0.1], [0.75, 0.25], [0.001, 0.999]])
    loss = log_loss(y_true, y_pred)
    assert_almost_equal(loss, 1.8817971)

    # multiclass case; adapted from http://bit.ly/RJJHWA
    y_true = [1, 0, 2]
    y_pred = [[0.2, 0.7, 0.1], [0.6, 0.2, 0.2], [0.6, 0.1, 0.3]]
    loss = log_loss(y_true, y_pred, normalize=True)
    assert_almost_equal(loss, 0.6904911)

    # check that we got all the shapes and axes right
    # by doubling the length of y_true and y_pred
    y_true *= 2
    y_pred *= 2
    loss = log_loss(y_true, y_pred, normalize=False)
    assert_almost_equal(loss, 0.6904911 * 6, decimal=6)

    # check eps and handling of absolute zero and one probabilities
    y_pred = np.asarray(y_pred) > .5
    loss = log_loss(y_true, y_pred, normalize=True, eps=.1)
    assert_almost_equal(loss, log_loss(y_true, np.clip(y_pred, .1, .9)))

    # raise error if number of classes are not equal.
    y_true = [1, 0, 2]
    y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1]]
    assert_raises(ValueError, log_loss, y_true, y_pred)

    # case when y_true is a string array object
    y_true = ["ham", "spam", "spam", "ham"]
    y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]]
    loss = log_loss(y_true, y_pred)
    assert_almost_equal(loss, 1.0383217, decimal=6)

    # test labels option

    y_true = [2, 2]
    y_pred = [[0.2, 0.7], [0.6, 0.5]]
    y_score = np.array([[0.1, 0.9], [0.1, 0.9]])
    error_str = ('y_true contains only one label (2). Please provide '
                 'the true labels explicitly through the labels argument.')
    assert_raise_message(ValueError, error_str, log_loss, y_true, y_pred)

    y_pred = [[0.2, 0.7], [0.6, 0.5], [0.2, 0.3]]
    error_str = ('Found input variables with inconsistent numbers of samples: '
                 '[3, 2]')
    assert_raise_message(ValueError, error_str, log_loss, y_true, y_pred)

    # works when the labels argument is used

    true_log_loss = -np.mean(np.log(y_score[:, 1]))
    calculated_log_loss = log_loss(y_true, y_score, labels=[1, 2])
    assert_almost_equal(calculated_log_loss, true_log_loss)

    # ensure labels work when len(np.unique(y_true)) != y_pred.shape[1]
    y_true = [1, 2, 2]
    y_score2 = [[0.2, 0.7, 0.3], [0.6, 0.5, 0.3], [0.3, 0.9, 0.1]]
    loss = log_loss(y_true, y_score2, labels=[1, 2, 3])
    assert_almost_equal(loss, 1.0630345, decimal=6)


def test_log_loss_pandas_input():
    # case when input is a pandas series and dataframe gh-5715
    y_tr = np.array(["ham", "spam", "spam", "ham"])
    y_pr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]])
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import Series, DataFrame
        types.append((Series, DataFrame))
    except ImportError:
        pass
    for TrueInputType, PredInputType in types:
        # y_pred dataframe, y_true series
        y_true, y_pred = TrueInputType(y_tr), PredInputType(y_pr)
        loss = log_loss(y_true, y_pred)
        assert_almost_equal(loss, 1.0383217, decimal=6)


def test_brier_score_loss():
    # Check brier_score_loss function
    y_true = np.array([0, 1, 1, 0, 1, 1])
    y_pred = np.array([0.1, 0.8, 0.9, 0.3, 1., 0.95])
    true_score = linalg.norm(y_true - y_pred) ** 2 / len(y_true)

    assert_almost_equal(brier_score_loss(y_true, y_true), 0.0)
    assert_almost_equal(brier_score_loss(y_true, y_pred), true_score)
    assert_almost_equal(brier_score_loss(1. + y_true, y_pred),
                        true_score)
    assert_almost_equal(brier_score_loss(2 * y_true - 1, y_pred),
                        true_score)
    assert_raises(ValueError, brier_score_loss, y_true, y_pred[1:])
    assert_raises(ValueError, brier_score_loss, y_true, y_pred + 1.)
    assert_raises(ValueError, brier_score_loss, y_true, y_pred - 1.)
    # calculate even if only single class in y_true (#6980)
    assert_almost_equal(brier_score_loss([0], [0.5]), 0.25)
    assert_almost_equal(brier_score_loss([1], [0.5]), 0.25)