File: base.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (498 lines) | stat: -rw-r--r-- 16,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"""Base class for mixture models."""

# Author: Wei Xue <xuewei4d@gmail.com>
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

from __future__ import print_function

import warnings
from abc import ABCMeta, abstractmethod
from time import time

import numpy as np

from .. import cluster
from ..base import BaseEstimator
from ..base import DensityMixin
from ..externals import six
from ..exceptions import ConvergenceWarning
from ..utils import check_array, check_random_state
from ..utils.extmath import logsumexp


def _check_shape(param, param_shape, name):
    """Validate the shape of the input parameter 'param'.

    Parameters
    ----------
    param : array

    param_shape : tuple

    name : string
    """
    param = np.array(param)
    if param.shape != param_shape:
        raise ValueError("The parameter '%s' should have the shape of %s, "
                         "but got %s" % (name, param_shape, param.shape))


def _check_X(X, n_components=None, n_features=None):
    """Check the input data X.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)

    n_components : int

    Returns
    -------
    X : array, shape (n_samples, n_features)
    """
    X = check_array(X, dtype=[np.float64, np.float32])
    if n_components is not None and X.shape[0] < n_components:
        raise ValueError('Expected n_samples >= n_components '
                         'but got n_components = %d, n_samples = %d'
                         % (n_components, X.shape[0]))
    if n_features is not None and X.shape[1] != n_features:
        raise ValueError("Expected the input data X have %d features, "
                         "but got %d features"
                         % (n_features, X.shape[1]))
    return X


class BaseMixture(six.with_metaclass(ABCMeta, DensityMixin, BaseEstimator)):
    """Base class for mixture models.

    This abstract class specifies an interface for all mixture classes and
    provides basic common methods for mixture models.
    """

    def __init__(self, n_components, tol, reg_covar,
                 max_iter, n_init, init_params, random_state, warm_start,
                 verbose, verbose_interval):
        self.n_components = n_components
        self.tol = tol
        self.reg_covar = reg_covar
        self.max_iter = max_iter
        self.n_init = n_init
        self.init_params = init_params
        self.random_state = random_state
        self.warm_start = warm_start
        self.verbose = verbose
        self.verbose_interval = verbose_interval

    def _check_initial_parameters(self, X):
        """Check values of the basic parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
        """
        if self.n_components < 1:
            raise ValueError("Invalid value for 'n_components': %d "
                             "Estimation requires at least one component"
                             % self.n_components)

        if self.tol < 0.:
            raise ValueError("Invalid value for 'tol': %.5f "
                             "Tolerance used by the EM must be non-negative"
                             % self.tol)

        if self.n_init < 1:
            raise ValueError("Invalid value for 'n_init': %d "
                             "Estimation requires at least one run"
                             % self.n_init)

        if self.max_iter < 1:
            raise ValueError("Invalid value for 'max_iter': %d "
                             "Estimation requires at least one iteration"
                             % self.max_iter)

        if self.reg_covar < 0.:
            raise ValueError("Invalid value for 'reg_covar': %.5f "
                             "regularization on covariance must be "
                             "non-negative"
                             % self.reg_covar)

        # Check all the parameters values of the derived class
        self._check_parameters(X)

    @abstractmethod
    def _check_parameters(self, X):
        """Check initial parameters of the derived class.

        Parameters
        ----------
        X : array-like, shape  (n_samples, n_features)
        """
        pass

    def _initialize_parameters(self, X, random_state):
        """Initialize the model parameters.

        Parameters
        ----------
        X : array-like, shape  (n_samples, n_features)

        random_state: RandomState
            A random number generator instance.
        """
        n_samples, _ = X.shape

        if self.init_params == 'kmeans':
            resp = np.zeros((n_samples, self.n_components))
            label = cluster.KMeans(n_clusters=self.n_components, n_init=1,
                                   random_state=random_state).fit(X).labels_
            resp[np.arange(n_samples), label] = 1
        elif self.init_params == 'random':
            resp = random_state.rand(n_samples, self.n_components)
            resp /= resp.sum(axis=1)[:, np.newaxis]
        else:
            raise ValueError("Unimplemented initialization method '%s'"
                             % self.init_params)

        self._initialize(X, resp)

    @abstractmethod
    def _initialize(self, X, resp):
        """Initialize the model parameters of the derived class.

        Parameters
        ----------
        X : array-like, shape  (n_samples, n_features)

        resp : array-like, shape (n_samples, n_components)
        """
        pass

    def fit(self, X, y=None):
        """Estimate model parameters with the EM algorithm.

        The method fit the model `n_init` times and set the parameters with
        which the model has the largest likelihood or lower bound. Within each
        trial, the method iterates between E-step and M-step for `max_iter`
        times until the change of likelihood or lower bound is less than
        `tol`, otherwise, a `ConvergenceWarning` is raised.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        self
        """
        X = _check_X(X, self.n_components)
        self._check_initial_parameters(X)

        # if we enable warm_start, we will have a unique initialisation
        do_init = not(self.warm_start and hasattr(self, 'converged_'))
        n_init = self.n_init if do_init else 1

        max_lower_bound = -np.infty
        self.converged_ = False

        random_state = check_random_state(self.random_state)

        n_samples, _ = X.shape
        for init in range(n_init):
            self._print_verbose_msg_init_beg(init)

            if do_init:
                self._initialize_parameters(X, random_state)
                self.lower_bound_ = -np.infty

            for n_iter in range(self.max_iter):
                prev_lower_bound = self.lower_bound_

                log_prob_norm, log_resp = self._e_step(X)
                self._m_step(X, log_resp)
                self.lower_bound_ = self._compute_lower_bound(
                    log_resp, log_prob_norm)

                change = self.lower_bound_ - prev_lower_bound
                self._print_verbose_msg_iter_end(n_iter, change)

                if abs(change) < self.tol:
                    self.converged_ = True
                    break

            self._print_verbose_msg_init_end(self.lower_bound_)

            if self.lower_bound_ > max_lower_bound:
                max_lower_bound = self.lower_bound_
                best_params = self._get_parameters()
                best_n_iter = n_iter

        if not self.converged_:
            warnings.warn('Initialization %d did not converged. '
                          'Try different init parameters, '
                          'or increase max_iter, tol '
                          'or check for degenerate data.'
                          % (init + 1), ConvergenceWarning)

        self._set_parameters(best_params)
        self.n_iter_ = best_n_iter

        return self

    def _e_step(self, X):
        """E step.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        log_prob_norm : array, shape (n_samples,)
            Logarithm of the probability of each sample in X.

        log_responsibility : array, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        log_prob_norm, log_resp = self._estimate_log_prob_resp(X)
        return np.mean(log_prob_norm), log_resp

    @abstractmethod
    def _m_step(self, X, log_resp):
        """M step.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        log_resp : array-like, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        pass

    @abstractmethod
    def _check_is_fitted(self):
        pass

    @abstractmethod
    def _get_parameters(self):
        pass

    @abstractmethod
    def _set_parameters(self, params):
        pass

    def score_samples(self, X):
        """Compute the weighted log probabilities for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        log_prob : array, shape (n_samples,)
            Log probabilities of each data point in X.
        """
        self._check_is_fitted()
        X = _check_X(X, None, self.means_.shape[1])

        return logsumexp(self._estimate_weighted_log_prob(X), axis=1)

    def score(self, X, y=None):
        """Compute the per-sample average log-likelihood of the given data X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_dimensions)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        log_likelihood : float
            Log likelihood of the Gaussian mixture given X.
        """
        return self.score_samples(X).mean()

    def predict(self, X, y=None):
        """Predict the labels for the data samples in X using trained model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        labels : array, shape (n_samples,)
            Component labels.
        """
        self._check_is_fitted()
        X = _check_X(X, None, self.means_.shape[1])
        return self._estimate_weighted_log_prob(X).argmax(axis=1)

    def predict_proba(self, X):
        """Predict posterior probability of data per each component.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        resp : array, shape (n_samples, n_components)
            Returns the probability of the sample for each Gaussian
            (state) in the model.
        """
        self._check_is_fitted()
        X = _check_X(X, None, self.means_.shape[1])
        _, log_resp = self._estimate_log_prob_resp(X)
        return np.exp(log_resp)

    def sample(self, n_samples=1):
        """Generate random samples from the fitted Gaussian distribution.

        Parameters
        ----------
        n_samples : int, optional
            Number of samples to generate. Defaults to 1.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Randomly generated sample
        """
        self._check_is_fitted()

        if n_samples < 1:
            raise ValueError(
                "Invalid value for 'n_samples': %d . The sampling requires at "
                "least one sample." % (self.n_components))

        _, n_features = self.means_.shape
        rng = check_random_state(self.random_state)
        n_samples_comp = np.round(self.weights_ * n_samples).astype(int)

        if self.covariance_type == 'full':
            X = np.vstack([
                rng.multivariate_normal(mean, covariance, int(sample))
                for (mean, covariance, sample) in zip(
                    self.means_, self.covariances_, n_samples_comp)])
        elif self.covariance_type == "tied":
            X = np.vstack([
                rng.multivariate_normal(mean, self.covariances_, int(sample))
                for (mean, sample) in zip(
                    self.means_, n_samples_comp)])
        else:
            X = np.vstack([
                mean + rng.randn(sample, n_features) * np.sqrt(covariance)
                for (mean, covariance, sample) in zip(
                    self.means_, self.covariances_, n_samples_comp)])

        y = np.concatenate([j * np.ones(sample, dtype=int)
                           for j, sample in enumerate(n_samples_comp)])

        return (X, y)

    def _estimate_weighted_log_prob(self, X):
        """Estimate the weighted log-probabilities, log P(X | Z) + log weights.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        weighted_log_prob : array, shape (n_features, n_component)
        """
        return self._estimate_log_prob(X) + self._estimate_log_weights()

    @abstractmethod
    def _estimate_log_weights(self):
        """Estimate log-weights in EM algorithm, E[ log pi ] in VB algorithm.

        Returns
        -------
        log_weight : array, shape (n_components, )
        """
        pass

    @abstractmethod
    def _estimate_log_prob(self, X):
        """Estimate the log-probabilities log P(X | Z).

        Compute the log-probabilities per each component for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        log_prob : array, shape (n_samples, n_component)
        """
        pass

    def _estimate_log_prob_resp(self, X):
        """Estimate log probabilities and responsibilities for each sample.

        Compute the log probabilities, weighted log probabilities per
        component and responsibilities for each sample in X with respect to
        the current state of the model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        log_prob_norm : array, shape (n_samples,)
            log p(X)

        log_responsibilities : array, shape (n_samples, n_components)
            logarithm of the responsibilities
        """
        weighted_log_prob = self._estimate_weighted_log_prob(X)
        log_prob_norm = logsumexp(weighted_log_prob, axis=1)
        with np.errstate(under='ignore'):
            # ignore underflow
            log_resp = weighted_log_prob - log_prob_norm[:, np.newaxis]
        return log_prob_norm, log_resp

    def _print_verbose_msg_init_beg(self, n_init):
        """Print verbose message on initialization."""
        if self.verbose == 1:
            print("Initialization %d" % n_init)
        elif self.verbose >= 2:
            print("Initialization %d" % n_init)
            self._init_prev_time = time()
            self._iter_prev_time = self._init_prev_time

    def _print_verbose_msg_iter_end(self, n_iter, diff_ll):
        """Print verbose message on initialization."""
        if n_iter % self.verbose_interval == 0:
            if self.verbose == 1:
                print("  Iteration %d" % n_iter)
            elif self.verbose >= 2:
                cur_time = time()
                print("  Iteration %d\t time lapse %.5fs\t ll change %.5f" % (
                    n_iter, cur_time - self._iter_prev_time, diff_ll))
                self._iter_prev_time = cur_time

    def _print_verbose_msg_init_end(self, ll):
        """Print verbose message on the end of iteration."""
        if self.verbose == 1:
            print("Initialization converged: %s" % self.converged_)
        elif self.verbose >= 2:
            print("Initialization converged: %s\t time lapse %.5fs\t ll %.5f" %
                  (self.converged_, time() - self._init_prev_time, ll))