1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
# Important note for the deprecation cleaning of 0.20 :
# All the function and classes of this file have been deprecated in 0.18.
# When you remove this file please also remove the related files
# - 'sklearn/mixture/dpgmm.py'
# - 'sklearn/mixture/gmm.py'
# - 'sklearn/mixture/test_gmm.py'
import unittest
import sys
import numpy as np
from sklearn.mixture import DPGMM, VBGMM
from sklearn.mixture.dpgmm import log_normalize
from sklearn.datasets import make_blobs
from sklearn.utils.testing import assert_array_less, assert_equal
from sklearn.utils.testing import assert_warns_message, ignore_warnings
from sklearn.mixture.tests.test_gmm import GMMTester
from sklearn.externals.six.moves import cStringIO as StringIO
from sklearn.mixture.dpgmm import digamma, gammaln
from sklearn.mixture.dpgmm import wishart_log_det, wishart_logz
np.seterr(all='warn')
@ignore_warnings(category=DeprecationWarning)
def test_class_weights():
# check that the class weights are updated
# simple 3 cluster dataset
X, y = make_blobs(random_state=1)
for Model in [DPGMM, VBGMM]:
dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50)
dpgmm.fit(X)
# get indices of components that are used:
indices = np.unique(dpgmm.predict(X))
active = np.zeros(10, dtype=np.bool)
active[indices] = True
# used components are important
assert_array_less(.1, dpgmm.weights_[active])
# others are not
assert_array_less(dpgmm.weights_[~active], .05)
@ignore_warnings(category=DeprecationWarning)
def test_verbose_boolean():
# checks that the output for the verbose output is the same
# for the flag values '1' and 'True'
# simple 3 cluster dataset
X, y = make_blobs(random_state=1)
for Model in [DPGMM, VBGMM]:
dpgmm_bool = Model(n_components=10, random_state=1, alpha=20,
n_iter=50, verbose=True)
dpgmm_int = Model(n_components=10, random_state=1, alpha=20,
n_iter=50, verbose=1)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
# generate output with the boolean flag
dpgmm_bool.fit(X)
verbose_output = sys.stdout
verbose_output.seek(0)
bool_output = verbose_output.readline()
# generate output with the int flag
dpgmm_int.fit(X)
verbose_output = sys.stdout
verbose_output.seek(0)
int_output = verbose_output.readline()
assert_equal(bool_output, int_output)
finally:
sys.stdout = old_stdout
@ignore_warnings(category=DeprecationWarning)
def test_verbose_first_level():
# simple 3 cluster dataset
X, y = make_blobs(random_state=1)
for Model in [DPGMM, VBGMM]:
dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50,
verbose=1)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
dpgmm.fit(X)
finally:
sys.stdout = old_stdout
@ignore_warnings(category=DeprecationWarning)
def test_verbose_second_level():
# simple 3 cluster dataset
X, y = make_blobs(random_state=1)
for Model in [DPGMM, VBGMM]:
dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50,
verbose=2)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
dpgmm.fit(X)
finally:
sys.stdout = old_stdout
@ignore_warnings(category=DeprecationWarning)
def test_digamma():
assert_warns_message(DeprecationWarning, "The function digamma is"
" deprecated in 0.18 and will be removed in 0.20. "
"Use scipy.special.digamma instead.", digamma, 3)
@ignore_warnings(category=DeprecationWarning)
def test_gammaln():
assert_warns_message(DeprecationWarning, "The function gammaln"
" is deprecated in 0.18 and will be removed"
" in 0.20. Use scipy.special.gammaln instead.",
gammaln, 3)
@ignore_warnings(category=DeprecationWarning)
def test_log_normalize():
v = np.array([0.1, 0.8, 0.01, 0.09])
a = np.log(2 * v)
result = assert_warns_message(DeprecationWarning, "The function "
"log_normalize is deprecated in 0.18 and"
" will be removed in 0.20.",
log_normalize, a)
assert np.allclose(v, result, rtol=0.01)
@ignore_warnings(category=DeprecationWarning)
def test_wishart_log_det():
a = np.array([0.1, 0.8, 0.01, 0.09])
b = np.array([0.2, 0.7, 0.05, 0.1])
assert_warns_message(DeprecationWarning, "The function "
"wishart_log_det is deprecated in 0.18 and"
" will be removed in 0.20.",
wishart_log_det, a, b, 2, 4)
@ignore_warnings(category=DeprecationWarning)
def test_wishart_logz():
assert_warns_message(DeprecationWarning, "The function "
"wishart_logz is deprecated in 0.18 and "
"will be removed in 0.20.", wishart_logz,
3, np.identity(3), 1, 3)
@ignore_warnings(category=DeprecationWarning)
def test_DPGMM_deprecation():
assert_warns_message(
DeprecationWarning, "The `DPGMM` class is not working correctly and "
"it's better to use `sklearn.mixture.BayesianGaussianMixture` class "
"with parameter `weight_concentration_prior_type='dirichlet_process'` "
"instead. DPGMM is deprecated in 0.18 and will be removed in 0.20.",
DPGMM)
def do_model(self, **kwds):
return VBGMM(verbose=False, **kwds)
class DPGMMTester(GMMTester):
model = DPGMM
do_test_eval = False
def score(self, g, train_obs):
_, z = g.score_samples(train_obs)
return g.lower_bound(train_obs, z)
class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester):
covariance_type = 'spherical'
setUp = GMMTester._setUp
class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester):
covariance_type = 'diag'
setUp = GMMTester._setUp
class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester):
covariance_type = 'tied'
setUp = GMMTester._setUp
class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester):
covariance_type = 'full'
setUp = GMMTester._setUp
def test_VBGMM_deprecation():
assert_warns_message(
DeprecationWarning, "The `VBGMM` class is not working correctly and "
"it's better to use `sklearn.mixture.BayesianGaussianMixture` class "
"with parameter `weight_concentration_prior_type="
"'dirichlet_distribution'` instead. VBGMM is deprecated "
"in 0.18 and will be removed in 0.20.", VBGMM)
class VBGMMTester(GMMTester):
model = do_model
do_test_eval = False
def score(self, g, train_obs):
_, z = g.score_samples(train_obs)
return g.lower_bound(train_obs, z)
class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester):
covariance_type = 'spherical'
setUp = GMMTester._setUp
class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester):
covariance_type = 'diag'
setUp = GMMTester._setUp
class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester):
covariance_type = 'tied'
setUp = GMMTester._setUp
class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester):
covariance_type = 'full'
setUp = GMMTester._setUp
def test_vbgmm_no_modify_alpha():
alpha = 2.
n_components = 3
X, y = make_blobs(random_state=1)
vbgmm = VBGMM(n_components=n_components, alpha=alpha, n_iter=1)
assert_equal(vbgmm.alpha, alpha)
assert_equal(vbgmm.fit(X).alpha_, float(alpha) / n_components)
|