File: test_gmm.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (535 lines) | stat: -rw-r--r-- 20,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Important note for the deprecation cleaning of 0.20 :
# All the functions and classes of this file have been deprecated in 0.18.
# When you remove this file please remove the related files
# - 'sklearn/mixture/dpgmm.py'
# - 'sklearn/mixture/gmm.py'
# - 'sklearn/mixture/test_dpgmm.py'
import unittest
import copy
import sys

from nose.tools import assert_true
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
                           assert_raises)
from scipy import stats
from sklearn import mixture
from sklearn.datasets.samples_generator import make_spd_matrix
from sklearn.utils.testing import (assert_greater, assert_raise_message,
                                   assert_warns_message, ignore_warnings)
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.externals.six.moves import cStringIO as StringIO


rng = np.random.RandomState(0)


def test_sample_gaussian():
    # Test sample generation from mixture.sample_gaussian where covariance
    # is diagonal, spherical and full

    n_features, n_samples = 2, 300
    axis = 1
    mu = rng.randint(10) * rng.rand(n_features)
    cv = (rng.rand(n_features) + 1.0) ** 2

    samples = mixture.sample_gaussian(
        mu, cv, covariance_type='diag', n_samples=n_samples)

    assert_true(np.allclose(samples.mean(axis), mu, atol=1.3))
    assert_true(np.allclose(samples.var(axis), cv, atol=1.5))

    # the same for spherical covariances
    cv = (rng.rand() + 1.0) ** 2
    samples = mixture.sample_gaussian(
        mu, cv, covariance_type='spherical', n_samples=n_samples)

    assert_true(np.allclose(samples.mean(axis), mu, atol=1.5))
    assert_true(np.allclose(
        samples.var(axis), np.repeat(cv, n_features), atol=1.5))

    # and for full covariances
    A = rng.randn(n_features, n_features)
    cv = np.dot(A.T, A) + np.eye(n_features)
    samples = mixture.sample_gaussian(
        mu, cv, covariance_type='full', n_samples=n_samples)
    assert_true(np.allclose(samples.mean(axis), mu, atol=1.3))
    assert_true(np.allclose(np.cov(samples), cv, atol=2.5))

    # Numerical stability check: in SciPy 0.12.0 at least, eigh may return
    # tiny negative values in its second return value.
    from sklearn.mixture import sample_gaussian
    x = sample_gaussian([0, 0], [[4, 3], [1, .1]],
                        covariance_type='full', random_state=42)
    assert_true(np.isfinite(x).all())


def _naive_lmvnpdf_diag(X, mu, cv):
    # slow and naive implementation of lmvnpdf
    ref = np.empty((len(X), len(mu)))
    stds = np.sqrt(cv)
    for i, (m, std) in enumerate(zip(mu, stds)):
        ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1)
    return ref


def test_lmvnpdf_diag():
    # test a slow and naive implementation of lmvnpdf and
    # compare it to the vectorized version (mixture.lmvnpdf) to test
    # for correctness
    n_features, n_components, n_samples = 2, 3, 10
    mu = rng.randint(10) * rng.rand(n_components, n_features)
    cv = (rng.rand(n_components, n_features) + 1.0) ** 2
    X = rng.randint(10) * rng.rand(n_samples, n_features)

    ref = _naive_lmvnpdf_diag(X, mu, cv)
    lpr = assert_warns_message(DeprecationWarning, "The function"
                             " log_multivariate_normal_density is "
                             "deprecated in 0.18 and will be removed in 0.20.",
                             mixture.log_multivariate_normal_density,
                             X, mu, cv, 'diag')
    assert_array_almost_equal(lpr, ref)


def test_lmvnpdf_spherical():
    n_features, n_components, n_samples = 2, 3, 10

    mu = rng.randint(10) * rng.rand(n_components, n_features)
    spherecv = rng.rand(n_components, 1) ** 2 + 1
    X = rng.randint(10) * rng.rand(n_samples, n_features)

    cv = np.tile(spherecv, (n_features, 1))
    reference = _naive_lmvnpdf_diag(X, mu, cv)
    lpr = assert_warns_message(DeprecationWarning, "The function"
                             " log_multivariate_normal_density is "
                             "deprecated in 0.18 and will be removed in 0.20.",
                             mixture.log_multivariate_normal_density,
                             X, mu, spherecv, 'spherical')
    assert_array_almost_equal(lpr, reference)

def test_lmvnpdf_full():
    n_features, n_components, n_samples = 2, 3, 10

    mu = rng.randint(10) * rng.rand(n_components, n_features)
    cv = (rng.rand(n_components, n_features) + 1.0) ** 2
    X = rng.randint(10) * rng.rand(n_samples, n_features)

    fullcv = np.array([np.diag(x) for x in cv])

    reference = _naive_lmvnpdf_diag(X, mu, cv)
    lpr = assert_warns_message(DeprecationWarning, "The function"
                             " log_multivariate_normal_density is "
                             "deprecated in 0.18 and will be removed in 0.20.",
                             mixture.log_multivariate_normal_density,
                             X, mu, fullcv, 'full')
    assert_array_almost_equal(lpr, reference)


def test_lvmpdf_full_cv_non_positive_definite():
    n_features, n_samples = 2, 10
    rng = np.random.RandomState(0)
    X = rng.randint(10) * rng.rand(n_samples, n_features)
    mu = np.mean(X, 0)
    cv = np.array([[[-1, 0], [0, 1]]])
    expected_message = "'covars' must be symmetric, positive-definite"
    assert_raise_message(ValueError, expected_message,
                         mixture.log_multivariate_normal_density,
                         X, mu, cv, 'full')


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_GMM_attributes():
    n_components, n_features = 10, 4
    covariance_type = 'diag'
    g = mixture.GMM(n_components, covariance_type, random_state=rng)
    weights = rng.rand(n_components)
    weights = weights / weights.sum()
    means = rng.randint(-20, 20, (n_components, n_features))

    assert_true(g.n_components == n_components)
    assert_true(g.covariance_type == covariance_type)

    g.weights_ = weights
    assert_array_almost_equal(g.weights_, weights)
    g.means_ = means
    assert_array_almost_equal(g.means_, means)

    covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2
    g.covars_ = covars
    assert_array_almost_equal(g.covars_, covars)
    assert_raises(ValueError, g._set_covars, [])
    assert_raises(ValueError, g._set_covars,
                  np.zeros((n_components - 2, n_features)))

    assert_raises(ValueError, mixture.GMM, n_components=20,
                  covariance_type='badcovariance_type')


class GMMTester():
    do_test_eval = True

    def _setUp(self):
        self.n_components = 10
        self.n_features = 4
        self.weights = rng.rand(self.n_components)
        self.weights = self.weights / self.weights.sum()
        self.means = rng.randint(-20, 20, (self.n_components, self.n_features))
        self.threshold = -0.5
        self.I = np.eye(self.n_features)
        self.covars = {
            'spherical': (0.1 + 2 * rng.rand(self.n_components,
                                             self.n_features)) ** 2,
            'tied': (make_spd_matrix(self.n_features, random_state=0)
                     + 5 * self.I),
            'diag': (0.1 + 2 * rng.rand(self.n_components,
                                        self.n_features)) ** 2,
            'full': np.array([make_spd_matrix(self.n_features, random_state=0)
                              + 5 * self.I for x in range(self.n_components)])}

    # This function tests the deprecated old GMM class
    @ignore_warnings(category=DeprecationWarning)
    def test_eval(self):
        if not self.do_test_eval:
            return  # DPGMM does not support setting the means and
        # covariances before fitting There is no way of fixing this
        # due to the variational parameters being more expressive than
        # covariance matrices
        g = self.model(n_components=self.n_components,
                       covariance_type=self.covariance_type, random_state=rng)
        # Make sure the means are far apart so responsibilities.argmax()
        # picks the actual component used to generate the observations.
        g.means_ = 20 * self.means
        g.covars_ = self.covars[self.covariance_type]
        g.weights_ = self.weights

        gaussidx = np.repeat(np.arange(self.n_components), 5)
        n_samples = len(gaussidx)
        X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx]

        with ignore_warnings(category=DeprecationWarning):
            ll, responsibilities = g.score_samples(X)

        self.assertEqual(len(ll), n_samples)
        self.assertEqual(responsibilities.shape,
                         (n_samples, self.n_components))
        assert_array_almost_equal(responsibilities.sum(axis=1),
                                  np.ones(n_samples))
        assert_array_equal(responsibilities.argmax(axis=1), gaussidx)

    # This function tests the deprecated old GMM class
    @ignore_warnings(category=DeprecationWarning)
    def test_sample(self, n=100):
        g = self.model(n_components=self.n_components,
                       covariance_type=self.covariance_type,
                       random_state=rng)
        # Make sure the means are far apart so responsibilities.argmax()
        # picks the actual component used to generate the observations.
        g.means_ = 20 * self.means
        g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1)
        g.weights_ = self.weights

        with ignore_warnings(category=DeprecationWarning):
            samples = g.sample(n)
        self.assertEqual(samples.shape, (n, self.n_features))

    # This function tests the deprecated old GMM class
    @ignore_warnings(category=DeprecationWarning)
    def test_train(self, params='wmc'):
        g = mixture.GMM(n_components=self.n_components,
                        covariance_type=self.covariance_type)
        with ignore_warnings(category=DeprecationWarning):
            g.weights_ = self.weights
            g.means_ = self.means
            g.covars_ = 20 * self.covars[self.covariance_type]

        # Create a training set by sampling from the predefined distribution.
        with ignore_warnings(category=DeprecationWarning):
            X = g.sample(n_samples=100)
            g = self.model(n_components=self.n_components,
                           covariance_type=self.covariance_type,
                           random_state=rng, min_covar=1e-1,
                           n_iter=1, init_params=params)
            g.fit(X)

        # Do one training iteration at a time so we can keep track of
        # the log likelihood to make sure that it increases after each
        # iteration.
        trainll = []
        with ignore_warnings(category=DeprecationWarning):
            for _ in range(5):
                g.params = params
                g.init_params = ''
                g.fit(X)
                trainll.append(self.score(g, X))
            g.n_iter = 10
            g.init_params = ''
            g.params = params
            g.fit(X)  # finish fitting

        # Note that the log likelihood will sometimes decrease by a
        # very small amount after it has more or less converged due to
        # the addition of min_covar to the covariance (to prevent
        # underflow).  This is why the threshold is set to -0.5
        # instead of 0.
        with ignore_warnings(category=DeprecationWarning):
            delta_min = np.diff(trainll).min()
        self.assertTrue(
            delta_min > self.threshold,
            "The min nll increase is %f which is lower than the admissible"
            " threshold of %f, for model %s. The likelihoods are %s."
            % (delta_min, self.threshold, self.covariance_type, trainll))

    # This function tests the deprecated old GMM class
    @ignore_warnings(category=DeprecationWarning)
    def test_train_degenerate(self, params='wmc'):
        # Train on degenerate data with 0 in some dimensions
        # Create a training set by sampling from the predefined
        # distribution.
        X = rng.randn(100, self.n_features)
        X.T[1:] = 0
        g = self.model(n_components=2,
                       covariance_type=self.covariance_type,
                       random_state=rng, min_covar=1e-3, n_iter=5,
                       init_params=params)
        with ignore_warnings(category=DeprecationWarning):
            g.fit(X)
            trainll = g.score(X)
        self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5)

    # This function tests the deprecated old GMM class
    @ignore_warnings(category=DeprecationWarning)
    def test_train_1d(self, params='wmc'):
        # Train on 1-D data
        # Create a training set by sampling from the predefined
        # distribution.
        X = rng.randn(100, 1)
        # X.T[1:] = 0
        g = self.model(n_components=2,
                       covariance_type=self.covariance_type,
                       random_state=rng, min_covar=1e-7, n_iter=5,
                       init_params=params)
        with ignore_warnings(category=DeprecationWarning):
            g.fit(X)
            trainll = g.score(X)
            if isinstance(g, mixture.dpgmm._DPGMMBase):
                self.assertTrue(np.sum(np.abs(trainll / 100)) < 5)
            else:
                self.assertTrue(np.sum(np.abs(trainll / 100)) < 2)

    # This function tests the deprecated old GMM class
    @ignore_warnings(category=DeprecationWarning)
    def score(self, g, X):
        with ignore_warnings(category=DeprecationWarning):
            return g.score(X).sum()


class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester):
    covariance_type = 'spherical'
    model = mixture.GMM
    setUp = GMMTester._setUp


class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester):
    covariance_type = 'diag'
    model = mixture.GMM
    setUp = GMMTester._setUp


class TestGMMWithTiedCovars(unittest.TestCase, GMMTester):
    covariance_type = 'tied'
    model = mixture.GMM
    setUp = GMMTester._setUp


class TestGMMWithFullCovars(unittest.TestCase, GMMTester):
    covariance_type = 'full'
    model = mixture.GMM
    setUp = GMMTester._setUp


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_multiple_init():
    # Test that multiple inits does not much worse than a single one
    X = rng.randn(30, 5)
    X[:10] += 2
    g = mixture.GMM(n_components=2, covariance_type='spherical',
                    random_state=rng, min_covar=1e-7, n_iter=5)
    with ignore_warnings(category=DeprecationWarning):
        train1 = g.fit(X).score(X).sum()
        g.n_init = 5
        train2 = g.fit(X).score(X).sum()
    assert_true(train2 >= train1 - 1.e-2)


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_n_parameters():
    n_samples, n_dim, n_components = 7, 5, 2
    X = rng.randn(n_samples, n_dim)
    n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41}
    for cv_type in ['full', 'tied', 'diag', 'spherical']:
        with ignore_warnings(category=DeprecationWarning):
            g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
                            random_state=rng, min_covar=1e-7, n_iter=1)
            g.fit(X)
            assert_true(g._n_parameters() == n_params[cv_type])


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_1d_1component():
    # Test all of the covariance_types return the same BIC score for
    # 1-dimensional, 1 component fits.
    n_samples, n_dim, n_components = 100, 1, 1
    X = rng.randn(n_samples, n_dim)
    g_full = mixture.GMM(n_components=n_components, covariance_type='full',
                         random_state=rng, min_covar=1e-7, n_iter=1)
    with ignore_warnings(category=DeprecationWarning):
        g_full.fit(X)
        g_full_bic = g_full.bic(X)
        for cv_type in ['tied', 'diag', 'spherical']:
            g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
                            random_state=rng, min_covar=1e-7, n_iter=1)
            g.fit(X)
            assert_array_almost_equal(g.bic(X), g_full_bic)


def assert_fit_predict_correct(model, X):
    model2 = copy.deepcopy(model)

    predictions_1 = model.fit(X).predict(X)
    predictions_2 = model2.fit_predict(X)

    assert adjusted_rand_score(predictions_1, predictions_2) == 1.0


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_fit_predict():
    """
    test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict
    """
    lrng = np.random.RandomState(101)

    n_samples, n_dim, n_comps = 100, 2, 2
    mu = np.array([[8, 8]])
    component_0 = lrng.randn(n_samples, n_dim)
    component_1 = lrng.randn(n_samples, n_dim) + mu
    X = np.vstack((component_0, component_1))

    for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM):
        model = m_constructor(n_components=n_comps, covariance_type='full',
                              min_covar=1e-7, n_iter=5,
                              random_state=np.random.RandomState(0))
        assert_fit_predict_correct(model, X)

    model = mixture.GMM(n_components=n_comps, n_iter=0)
    z = model.fit_predict(X)
    assert np.all(z == 0), "Quick Initialization Failed!"


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_aic():
    # Test the aic and bic criteria
    n_samples, n_dim, n_components = 50, 3, 2
    X = rng.randn(n_samples, n_dim)
    SGH = 0.5 * (X.var() + np.log(2 * np.pi))  # standard gaussian entropy

    for cv_type in ['full', 'tied', 'diag', 'spherical']:
        g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
                        random_state=rng, min_covar=1e-7)
        g.fit(X)
        aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters()
        bic = (2 * n_samples * SGH * n_dim +
               np.log(n_samples) * g._n_parameters())
        bound = n_dim * 3. / np.sqrt(n_samples)
        assert_true(np.abs(g.aic(X) - aic) / n_samples < bound)
        assert_true(np.abs(g.bic(X) - bic) / n_samples < bound)


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def check_positive_definite_covars(covariance_type):
    r"""Test that covariance matrices do not become non positive definite

    Due to the accumulation of round-off errors, the computation of the
    covariance  matrices during the learning phase could lead to non-positive
    definite covariance matrices. Namely the use of the formula:

    .. math:: C = (\sum_i w_i  x_i x_i^T) - \mu \mu^T

    instead of:

    .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T

    while mathematically equivalent, was observed a ``LinAlgError`` exception,
    when computing a ``GMM`` with full covariance matrices and fixed mean.

    This function ensures that some later optimization will not introduce the
    problem again.
    """
    rng = np.random.RandomState(1)
    # we build a dataset with 2 2d component. The components are unbalanced
    # (respective weights 0.9 and 0.1)
    X = rng.randn(100, 2)
    X[-10:] += (3, 3)  # Shift the 10 last points

    gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type,
                      min_covar=1e-3)

    # This is a non-regression test for issue #2640. The following call used
    # to trigger:
    # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite
    gmm.fit(X)

    if covariance_type == "diag" or covariance_type == "spherical":
        assert_greater(gmm.covars_.min(), 0)
    else:
        if covariance_type == "tied":
            covs = [gmm.covars_]
        else:
            covs = gmm.covars_

        for c in covs:
            assert_greater(np.linalg.det(c), 0)


def test_positive_definite_covars():
    # Check positive definiteness for all covariance types
    for covariance_type in ["full", "tied", "diag", "spherical"]:
        yield check_positive_definite_covars, covariance_type


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_verbose_first_level():
    # Create sample data
    X = rng.randn(30, 5)
    X[:10] += 2
    g = mixture.GMM(n_components=2, n_init=2, verbose=1)

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        g.fit(X)
    finally:
        sys.stdout = old_stdout


# This function tests the deprecated old GMM class
@ignore_warnings(category=DeprecationWarning)
def test_verbose_second_level():
    # Create sample data
    X = rng.randn(30, 5)
    X[:10] += 2
    g = mixture.GMM(n_components=2, n_init=2, verbose=2)

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        g.fit(X)
    finally:
        sys.stdout = old_stdout