File: _validation.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (961 lines) | stat: -rw-r--r-- 36,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

"""
The :mod:`sklearn.model_selection._validation` module includes classes and
functions to validate the model.
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
#         Gael Varoquaux <gael.varoquaux@normalesup.org>,
#         Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause


from __future__ import print_function
from __future__ import division

import warnings
import numbers
import time

import numpy as np
import scipy.sparse as sp

from ..base import is_classifier, clone
from ..utils import indexable, check_random_state, safe_indexing
from ..utils.fixes import astype
from ..utils.validation import _is_arraylike, _num_samples
from ..utils.metaestimators import _safe_split
from ..externals.joblib import Parallel, delayed, logger
from ..metrics.scorer import check_scoring
from ..exceptions import FitFailedWarning
from ._split import check_cv

__all__ = ['cross_val_score', 'cross_val_predict', 'permutation_test_score',
           'learning_curve', 'validation_curve']


def cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None,
                    n_jobs=1, verbose=0, fit_params=None,
                    pre_dispatch='2*n_jobs'):
    """Evaluate a score by cross-validation

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be, for example a list, or an array at least 2d.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:
          - None, to use the default 3-fold cross validation,
          - integer, to specify the number of folds in a `(Stratified)KFold`,
          - An object to be used as a cross-validation generator.
          - An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    Returns
    -------
    scores : array of float, shape=(len(list(cv)),)
        Array of scores of the estimator for each run of the cross validation.

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_val_score
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> print(cross_val_score(lasso, X, y))  # doctest: +ELLIPSIS
    [ 0.33150734  0.08022311  0.03531764]

    See Also
    ---------
    :func:`sklearn.metrics.make_scorer`:
        Make a scorer from a performance metric or loss function.

    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)
    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer,
                                              train, test, verbose, None,
                                              fit_params)
                      for train, test in cv.split(X, y, groups))
    return np.array(scores)[:, 0]


def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
                   parameters, fit_params, return_train_score=False,
                   return_parameters=False, return_n_test_samples=False,
                   return_times=False, error_score='raise'):
    """Fit estimator and compute scores for a given dataset split.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    scorer : callable
        A scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    train : array-like, shape (n_train_samples,)
        Indices of training samples.

    test : array-like, shape (n_test_samples,)
        Indices of test samples.

    verbose : integer
        The verbosity level.

    error_score : 'raise' (default) or numeric
        Value to assign to the score if an error occurs in estimator fitting.
        If set to 'raise', the error is raised. If a numeric value is given,
        FitFailedWarning is raised. This parameter does not affect the refit
        step, which will always raise the error.

    parameters : dict or None
        Parameters to be set on the estimator.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    return_train_score : boolean, optional, default: False
        Compute and return score on training set.

    return_parameters : boolean, optional, default: False
        Return parameters that has been used for the estimator.

    Returns
    -------
    train_score : float, optional
        Score on training set, returned only if `return_train_score` is `True`.

    test_score : float
        Score on test set.

    n_test_samples : int
        Number of test samples.

    fit_time : float
        Time spent for fitting in seconds.

    score_time : float
        Time spent for scoring in seconds.

    parameters : dict or None, optional
        The parameters that have been evaluated.
    """
    if verbose > 1:
        if parameters is None:
            msg = ''
        else:
            msg = '%s' % (', '.join('%s=%s' % (k, v)
                          for k, v in parameters.items()))
        print("[CV] %s %s" % (msg, (64 - len(msg)) * '.'))

    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = dict([(k, _index_param_value(X, v, train))
                      for k, v in fit_params.items()])

    if parameters is not None:
        estimator.set_params(**parameters)

    start_time = time.time()

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, y_test = _safe_split(estimator, X, y, test, train)

    try:
        if y_train is None:
            estimator.fit(X_train, **fit_params)
        else:
            estimator.fit(X_train, y_train, **fit_params)

    except Exception as e:
        # Note fit time as time until error
        fit_time = time.time() - start_time
        score_time = 0.0
        if error_score == 'raise':
            raise
        elif isinstance(error_score, numbers.Number):
            test_score = error_score
            if return_train_score:
                train_score = error_score
            warnings.warn("Classifier fit failed. The score on this train-test"
                          " partition for these parameters will be set to %f. "
                          "Details: \n%r" % (error_score, e), FitFailedWarning)
        else:
            raise ValueError("error_score must be the string 'raise' or a"
                             " numeric value. (Hint: if using 'raise', please"
                             " make sure that it has been spelled correctly.)")

    else:
        fit_time = time.time() - start_time
        test_score = _score(estimator, X_test, y_test, scorer)
        score_time = time.time() - start_time - fit_time
        if return_train_score:
            train_score = _score(estimator, X_train, y_train, scorer)

    if verbose > 2:
        msg += ", score=%f" % test_score
    if verbose > 1:
        end_msg = "%s -%s" % (msg, logger.short_format_time(score_time))
        print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg))

    ret = [train_score, test_score] if return_train_score else [test_score]

    if return_n_test_samples:
        ret.append(_num_samples(X_test))
    if return_times:
        ret.extend([fit_time, score_time])
    if return_parameters:
        ret.append(parameters)
    return ret


def _score(estimator, X_test, y_test, scorer):
    """Compute the score of an estimator on a given test set."""
    if y_test is None:
        score = scorer(estimator, X_test)
    else:
        score = scorer(estimator, X_test, y_test)
    if hasattr(score, 'item'):
        try:
            # e.g. unwrap memmapped scalars
            score = score.item()
        except ValueError:
            # non-scalar?
            pass
    if not isinstance(score, numbers.Number):
        raise ValueError("scoring must return a number, got %s (%s) instead."
                         % (str(score), type(score)))
    return score


def cross_val_predict(estimator, X, y=None, groups=None, cv=None, n_jobs=1,
                      verbose=0, fit_params=None, pre_dispatch='2*n_jobs',
                      method='predict'):
    """Generate cross-validated estimates for each input data point

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like
        The data to fit. Can be, for example a list, or an array at least 2d.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:
          - None, to use the default 3-fold cross validation,
          - integer, to specify the number of folds in a `(Stratified)KFold`,
          - An object to be used as a cross-validation generator.
          - An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    verbose : integer, optional
        The verbosity level.

    fit_params : dict, optional
        Parameters to pass to the fit method of the estimator.

    pre_dispatch : int, or string, optional
        Controls the number of jobs that get dispatched during parallel
        execution. Reducing this number can be useful to avoid an
        explosion of memory consumption when more jobs get dispatched
        than CPUs can process. This parameter can be:

            - None, in which case all the jobs are immediately
              created and spawned. Use this for lightweight and
              fast-running jobs, to avoid delays due to on-demand
              spawning of the jobs

            - An int, giving the exact number of total jobs that are
              spawned

            - A string, giving an expression as a function of n_jobs,
              as in '2*n_jobs'

    method : string, optional, default: 'predict'
        Invokes the passed method name of the passed estimator.

    Returns
    -------
    predictions : ndarray
        This is the result of calling ``method``

    Examples
    --------
    >>> from sklearn import datasets, linear_model
    >>> from sklearn.model_selection import cross_val_predict
    >>> diabetes = datasets.load_diabetes()
    >>> X = diabetes.data[:150]
    >>> y = diabetes.target[:150]
    >>> lasso = linear_model.Lasso()
    >>> y_pred = cross_val_predict(lasso, X, y)
    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))

    # Ensure the estimator has implemented the passed decision function
    if not callable(getattr(estimator, method)):
        raise AttributeError('{} not implemented in estimator'
                             .format(method))

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
                        pre_dispatch=pre_dispatch)
    prediction_blocks = parallel(delayed(_fit_and_predict)(
        clone(estimator), X, y, train, test, verbose, fit_params, method)
        for train, test in cv.split(X, y, groups))

    # Concatenate the predictions
    predictions = [pred_block_i for pred_block_i, _ in prediction_blocks]
    test_indices = np.concatenate([indices_i
                                   for _, indices_i in prediction_blocks])

    if not _check_is_permutation(test_indices, _num_samples(X)):
        raise ValueError('cross_val_predict only works for partitions')

    inv_test_indices = np.empty(len(test_indices), dtype=int)
    inv_test_indices[test_indices] = np.arange(len(test_indices))

    # Check for sparse predictions
    if sp.issparse(predictions[0]):
        predictions = sp.vstack(predictions, format=predictions[0].format)
    else:
        predictions = np.concatenate(predictions)
    return predictions[inv_test_indices]


def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params,
                     method):
    """Fit estimator and predict values for a given dataset split.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit' and 'predict'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like, optional, default: None
        The target variable to try to predict in the case of
        supervised learning.

    train : array-like, shape (n_train_samples,)
        Indices of training samples.

    test : array-like, shape (n_test_samples,)
        Indices of test samples.

    verbose : integer
        The verbosity level.

    fit_params : dict or None
        Parameters that will be passed to ``estimator.fit``.

    method : string
        Invokes the passed method name of the passed estimator.

    Returns
    -------
    predictions : sequence
        Result of calling 'estimator.method'

    test : array-like
        This is the value of the test parameter
    """
    # Adjust length of sample weights
    fit_params = fit_params if fit_params is not None else {}
    fit_params = dict([(k, _index_param_value(X, v, train))
                      for k, v in fit_params.items()])

    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, _ = _safe_split(estimator, X, y, test, train)

    if y_train is None:
        estimator.fit(X_train, **fit_params)
    else:
        estimator.fit(X_train, y_train, **fit_params)
    func = getattr(estimator, method)
    predictions = func(X_test)
    return predictions, test


def _check_is_permutation(indices, n_samples):
    """Check whether indices is a reordering of the array np.arange(n_samples)

    Parameters
    ----------
    indices : ndarray
        integer array to test
    n_samples : int
        number of expected elements

    Returns
    -------
    is_partition : bool
        True iff sorted(indices) is np.arange(n)
    """
    if len(indices) != n_samples:
        return False
    hit = np.zeros(n_samples, dtype=bool)
    hit[indices] = True
    if not np.all(hit):
        return False
    return True


def _index_param_value(X, v, indices):
    """Private helper function for parameter value indexing."""
    if not _is_arraylike(v) or _num_samples(v) != _num_samples(X):
        # pass through: skip indexing
        return v
    if sp.issparse(v):
        v = v.tocsr()
    return safe_indexing(v, indices)


def permutation_test_score(estimator, X, y, groups=None, cv=None,
                           n_permutations=100, n_jobs=1, random_state=0,
                           verbose=0, scoring=None):
    """Evaluate the significance of a cross-validated score with permutations

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    X : array-like of shape at least 2D
        The data to fit.

    y : array-like
        The target variable to try to predict in the case of
        supervised learning.

    groups : array-like, with shape (n_samples,), optional
        Labels to constrain permutation within groups, i.e. ``y`` values
        are permuted among samples with the same group identifier.
        When not specified, ``y`` values are permuted among all samples.

        When a grouped cross-validator is used, the group labels are
        also passed on to the ``split`` method of the cross-validator. The
        cross-validator uses them for grouping the samples  while splitting
        the dataset into train/test set.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:
          - None, to use the default 3-fold cross validation,
          - integer, to specify the number of folds in a `(Stratified)KFold`,
          - An object to be used as a cross-validation generator.
          - An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_permutations : integer, optional
        Number of times to permute ``y``.

    n_jobs : integer, optional
        The number of CPUs to use to do the computation. -1 means
        'all CPUs'.

    random_state : RandomState or an int seed (0 by default)
        A random number generator instance to define the state of the
        random permutations generator.

    verbose : integer, optional
        The verbosity level.

    Returns
    -------
    score : float
        The true score without permuting targets.

    permutation_scores : array, shape (n_permutations,)
        The scores obtained for each permutations.

    pvalue : float
        The returned value equals p-value if `scoring` returns bigger
        numbers for better scores (e.g., accuracy_score). If `scoring` is
        rather a loss function (i.e. when lower is better such as with
        `mean_squared_error`) then this is actually the complement of the
        p-value:  1 - p-value.

    Notes
    -----
    This function implements Test 1 in:

        Ojala and Garriga. Permutation Tests for Studying Classifier
        Performance.  The Journal of Machine Learning Research (2010)
        vol. 11

    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    scorer = check_scoring(estimator, scoring=scoring)
    random_state = check_random_state(random_state)

    # We clone the estimator to make sure that all the folds are
    # independent, and that it is pickle-able.
    score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer)
    permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(_permutation_test_score)(
            clone(estimator), X, _shuffle(y, groups, random_state),
            groups, cv, scorer)
        for _ in range(n_permutations))
    permutation_scores = np.array(permutation_scores)
    pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
    return score, permutation_scores, pvalue


permutation_test_score.__test__ = False  # to avoid a pb with nosetests


def _permutation_test_score(estimator, X, y, groups, cv, scorer):
    """Auxiliary function for permutation_test_score"""
    avg_score = []
    for train, test in cv.split(X, y, groups):
        estimator.fit(X[train], y[train])
        avg_score.append(scorer(estimator, X[test], y[test]))
    return np.mean(avg_score)


def _shuffle(y, groups, random_state):
    """Return a shuffled copy of y eventually shuffle among same groups."""
    if groups is None:
        indices = random_state.permutation(len(y))
    else:
        indices = np.arange(len(groups))
        for group in np.unique(groups):
            this_mask = (groups == group)
            indices[this_mask] = random_state.permutation(indices[this_mask])
    return y[indices]


def learning_curve(estimator, X, y, groups=None,
                   train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None,
                   exploit_incremental_learning=False, n_jobs=1,
                   pre_dispatch="all", verbose=0):
    """Learning curve.

    Determines cross-validated training and test scores for different training
    set sizes.

    A cross-validation generator splits the whole dataset k times in training
    and test data. Subsets of the training set with varying sizes will be used
    to train the estimator and a score for each training subset size and the
    test set will be computed. Afterwards, the scores will be averaged over
    all k runs for each training subset size.

    Read more in the :ref:`User Guide <learning_curve>`.

    Parameters
    ----------
    estimator : object type that implements the "fit" and "predict" methods
        An object of that type which is cloned for each validation.

    X : array-like, shape (n_samples, n_features)
        Training vector, where n_samples is the number of samples and
        n_features is the number of features.

    y : array-like, shape (n_samples) or (n_samples, n_features), optional
        Target relative to X for classification or regression;
        None for unsupervised learning.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    train_sizes : array-like, shape (n_ticks,), dtype float or int
        Relative or absolute numbers of training examples that will be used to
        generate the learning curve. If the dtype is float, it is regarded as a
        fraction of the maximum size of the training set (that is determined
        by the selected validation method), i.e. it has to be within (0, 1].
        Otherwise it is interpreted as absolute sizes of the training sets.
        Note that for classification the number of samples usually have to
        be big enough to contain at least one sample from each class.
        (default: np.linspace(0.1, 1.0, 5))

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:
          - None, to use the default 3-fold cross validation,
          - integer, to specify the number of folds in a `(Stratified)KFold`,
          - An object to be used as a cross-validation generator.
          - An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    exploit_incremental_learning : boolean, optional, default: False
        If the estimator supports incremental learning, this will be
        used to speed up fitting for different training set sizes.

    n_jobs : integer, optional
        Number of jobs to run in parallel (default 1).

    pre_dispatch : integer or string, optional
        Number of predispatched jobs for parallel execution (default is
        all). The option can reduce the allocated memory. The string can
        be an expression like '2*n_jobs'.

    verbose : integer, optional
        Controls the verbosity: the higher, the more messages.

    Returns
    -------
    train_sizes_abs : array, shape = (n_unique_ticks,), dtype int
        Numbers of training examples that has been used to generate the
        learning curve. Note that the number of ticks might be less
        than n_ticks because duplicate entries will be removed.

    train_scores : array, shape (n_ticks, n_cv_folds)
        Scores on training sets.

    test_scores : array, shape (n_ticks, n_cv_folds)
        Scores on test set.

    Notes
    -----
    See :ref:`examples/model_selection/plot_learning_curve.py
    <sphx_glr_auto_examples_model_selection_plot_learning_curve.py>`
    """
    if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
        raise ValueError("An estimator must support the partial_fit interface "
                         "to exploit incremental learning")
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))
    cv_iter = cv.split(X, y, groups)
    # Make a list since we will be iterating multiple times over the folds
    cv_iter = list(cv_iter)
    scorer = check_scoring(estimator, scoring=scoring)

    n_max_training_samples = len(cv_iter[0][0])
    # Because the lengths of folds can be significantly different, it is
    # not guaranteed that we use all of the available training data when we
    # use the first 'n_max_training_samples' samples.
    train_sizes_abs = _translate_train_sizes(train_sizes,
                                             n_max_training_samples)
    n_unique_ticks = train_sizes_abs.shape[0]
    if verbose > 0:
        print("[learning_curve] Training set sizes: " + str(train_sizes_abs))

    parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
                        verbose=verbose)
    if exploit_incremental_learning:
        classes = np.unique(y) if is_classifier(estimator) else None
        out = parallel(delayed(_incremental_fit_estimator)(
            clone(estimator), X, y, classes, train, test, train_sizes_abs,
            scorer, verbose) for train, test in cv.split(X, y, groups))
    else:
        out = parallel(delayed(_fit_and_score)(
            clone(estimator), X, y, scorer, train[:n_train_samples], test,
            verbose, parameters=None, fit_params=None, return_train_score=True)
            for train, test in cv_iter
            for n_train_samples in train_sizes_abs)
        out = np.array(out)
        n_cv_folds = out.shape[0] // n_unique_ticks
        out = out.reshape(n_cv_folds, n_unique_ticks, 2)

    out = np.asarray(out).transpose((2, 1, 0))

    return train_sizes_abs, out[0], out[1]


def _translate_train_sizes(train_sizes, n_max_training_samples):
    """Determine absolute sizes of training subsets and validate 'train_sizes'.

    Examples:
        _translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
        _translate_train_sizes([5, 10], 10) -> [5, 10]

    Parameters
    ----------
    train_sizes : array-like, shape (n_ticks,), dtype float or int
        Numbers of training examples that will be used to generate the
        learning curve. If the dtype is float, it is regarded as a
        fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].

    n_max_training_samples : int
        Maximum number of training samples (upper bound of 'train_sizes').

    Returns
    -------
    train_sizes_abs : array, shape (n_unique_ticks,), dtype int
        Numbers of training examples that will be used to generate the
        learning curve. Note that the number of ticks might be less
        than n_ticks because duplicate entries will be removed.
    """
    train_sizes_abs = np.asarray(train_sizes)
    n_ticks = train_sizes_abs.shape[0]
    n_min_required_samples = np.min(train_sizes_abs)
    n_max_required_samples = np.max(train_sizes_abs)
    if np.issubdtype(train_sizes_abs.dtype, np.float):
        if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
            raise ValueError("train_sizes has been interpreted as fractions "
                             "of the maximum number of training samples and "
                             "must be within (0, 1], but is within [%f, %f]."
                             % (n_min_required_samples,
                                n_max_required_samples))
        train_sizes_abs = astype(train_sizes_abs * n_max_training_samples,
                                 dtype=np.int, copy=False)
        train_sizes_abs = np.clip(train_sizes_abs, 1,
                                  n_max_training_samples)
    else:
        if (n_min_required_samples <= 0 or
                n_max_required_samples > n_max_training_samples):
            raise ValueError("train_sizes has been interpreted as absolute "
                             "numbers of training samples and must be within "
                             "(0, %d], but is within [%d, %d]."
                             % (n_max_training_samples,
                                n_min_required_samples,
                                n_max_required_samples))

    train_sizes_abs = np.unique(train_sizes_abs)
    if n_ticks > train_sizes_abs.shape[0]:
        warnings.warn("Removed duplicate entries from 'train_sizes'. Number "
                      "of ticks will be less than the size of "
                      "'train_sizes' %d instead of %d)."
                      % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning)

    return train_sizes_abs


def _incremental_fit_estimator(estimator, X, y, classes, train, test,
                               train_sizes, scorer, verbose):
    """Train estimator on training subsets incrementally and compute scores."""
    train_scores, test_scores = [], []
    partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
    for n_train_samples, partial_train in partitions:
        train_subset = train[:n_train_samples]
        X_train, y_train = _safe_split(estimator, X, y, train_subset)
        X_partial_train, y_partial_train = _safe_split(estimator, X, y,
                                                       partial_train)
        X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
        if y_partial_train is None:
            estimator.partial_fit(X_partial_train, classes=classes)
        else:
            estimator.partial_fit(X_partial_train, y_partial_train,
                                  classes=classes)
        train_scores.append(_score(estimator, X_train, y_train, scorer))
        test_scores.append(_score(estimator, X_test, y_test, scorer))
    return np.array((train_scores, test_scores)).T


def validation_curve(estimator, X, y, param_name, param_range, groups=None,
                     cv=None, scoring=None, n_jobs=1, pre_dispatch="all",
                     verbose=0):
    """Validation curve.

    Determine training and test scores for varying parameter values.

    Compute scores for an estimator with different values of a specified
    parameter. This is similar to grid search with one parameter. However, this
    will also compute training scores and is merely a utility for plotting the
    results.

    Read more in the :ref:`User Guide <learning_curve>`.

    Parameters
    ----------
    estimator : object type that implements the "fit" and "predict" methods
        An object of that type which is cloned for each validation.

    X : array-like, shape (n_samples, n_features)
        Training vector, where n_samples is the number of samples and
        n_features is the number of features.

    y : array-like, shape (n_samples) or (n_samples, n_features), optional
        Target relative to X for classification or regression;
        None for unsupervised learning.

    param_name : string
        Name of the parameter that will be varied.

    param_range : array-like, shape (n_values,)
        The values of the parameter that will be evaluated.

    groups : array-like, with shape (n_samples,), optional
        Group labels for the samples used while splitting the dataset into
        train/test set.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:
          - None, to use the default 3-fold cross validation,
          - integer, to specify the number of folds in a `(Stratified)KFold`,
          - An object to be used as a cross-validation generator.
          - An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass, :class:`StratifiedKFold` is used. In all
        other cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    n_jobs : integer, optional
        Number of jobs to run in parallel (default 1).

    pre_dispatch : integer or string, optional
        Number of predispatched jobs for parallel execution (default is
        all). The option can reduce the allocated memory. The string can
        be an expression like '2*n_jobs'.

    verbose : integer, optional
        Controls the verbosity: the higher, the more messages.

    Returns
    -------
    train_scores : array, shape (n_ticks, n_cv_folds)
        Scores on training sets.

    test_scores : array, shape (n_ticks, n_cv_folds)
        Scores on test set.

    Notes
    -----
    See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py`

    """
    X, y, groups = indexable(X, y, groups)

    cv = check_cv(cv, y, classifier=is_classifier(estimator))

    scorer = check_scoring(estimator, scoring=scoring)

    parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
                        verbose=verbose)
    out = parallel(delayed(_fit_and_score)(
        estimator, X, y, scorer, train, test, verbose,
        parameters={param_name: v}, fit_params=None, return_train_score=True)
        for train, test in cv.split(X, y, groups) for v in param_range)

    out = np.asarray(out)
    n_params = len(param_range)
    n_cv_folds = out.shape[0] // n_params
    out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0))

    return out[0], out[1]