File: test_function_transformer.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (130 lines) | stat: -rw-r--r-- 3,492 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from nose.tools import assert_equal
import numpy as np

from sklearn.utils import testing
from sklearn.preprocessing import FunctionTransformer


def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X):
    def _func(X, *args, **kwargs):
        args_store.append(X)
        args_store.extend(args)
        kwargs_store.update(kwargs)
        return func(X)

    return _func


def test_delegate_to_func():
    # (args|kwargs)_store will hold the positional and keyword arguments
    # passed to the function inside the FunctionTransformer.
    args_store = []
    kwargs_store = {}
    X = np.arange(10).reshape((5, 2))
    testing.assert_array_equal(
        FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X),
        X,
        'transform should have returned X unchanged',
    )

    # The function should only have received X.
    assert_equal(
        args_store,
        [X],
        'Incorrect positional arguments passed to func: {args}'.format(
            args=args_store,
        ),
    )
    assert_equal(
        kwargs_store,
        {},
        'Unexpected keyword arguments passed to func: {args}'.format(
            args=kwargs_store,
        ),
    )

    # reset the argument stores.
    args_store[:] = []  # python2 compatible inplace list clear.
    kwargs_store.clear()
    y = object()

    testing.assert_array_equal(
        FunctionTransformer(
            _make_func(args_store, kwargs_store),
            pass_y=True,
        ).transform(X, y),
        X,
        'transform should have returned X unchanged',
    )

    # The function should have received X and y.
    assert_equal(
        args_store,
        [X, y],
        'Incorrect positional arguments passed to func: {args}'.format(
            args=args_store,
        ),
    )
    assert_equal(
        kwargs_store,
        {},
        'Unexpected keyword arguments passed to func: {args}'.format(
            args=kwargs_store,
        ),
    )


def test_np_log():
    X = np.arange(10).reshape((5, 2))

    # Test that the numpy.log example still works.
    testing.assert_array_equal(
        FunctionTransformer(np.log1p).transform(X),
        np.log1p(X),
    )


def test_kw_arg():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    # Test that rounding is correct
    testing.assert_array_equal(F.transform(X),
                                  np.around(X, decimals=3))


def test_kw_arg_update():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    F.kw_args['decimals'] = 1

    # Test that rounding is correct
    testing.assert_array_equal(F.transform(X),
                                  np.around(X, decimals=1))


def test_kw_arg_reset():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    F.kw_args = dict(decimals=1)

    # Test that rounding is correct
    testing.assert_array_equal(F.transform(X),
                               np.around(X, decimals=1))


def test_inverse_transform():
    X = np.array([1, 4, 9, 16]).reshape((2, 2))

    # Test that inverse_transform works correctly
    F = FunctionTransformer(
            func=np.sqrt,
            inverse_func=np.around, inv_kw_args=dict(decimals=3))
    testing.assert_array_equal(
            F.inverse_transform(F.transform(X)),
            np.around(np.sqrt(X), decimals=3))